ANGSD: Analysis of next generation Sequencing Data
Latest tar.gz version is (0.938/0.939 on github), see Change_log for changes, and download it here.
Fst PCA
Matteo Fumagalli has been working on methods to estimate Fst and doing PCA/Covariance based on ANGSD output files.
The main documentation for this is found here: https://github.com/mfumagalli/ngsTools
We are also working on a new implementation that generalizes the above approach to multiple populations.
New Fancy Version
Two Populations real data
#this is with 2pops #first calculate per pop saf for each populatoin ../angsd -b list1 -anc hg19ancNoChr.fa -out pop1 -dosaf 1 -gl 1 ../angsd -b list2 -anc hg19ancNoChr.fa -out pop2 -dosaf 1 -gl 1 #calculate the 2dsfs prior ../misc/realSFS pop1.saf.idx pop2.saf.idx >pop1.pop2.ml #prepare the fst for easy window analysis etc ../misc/realSFS fst index pop1.saf.idx pop2.saf.idx -sfs pop1.pop2.ml -fstout here #get the global estimate ../misc/realSFS fst stats here.fst.idx -> FST.Unweight:0.069395 Fst.Weight:0.042349 #below is not tested that much, but seems to work ../misc/realSFS fst stats2 here.fst.idx -win 50000 -step 10000 >slidingwindow
3 Populations real data
In commands below im using 24 threads, because this is what I have. Adjust according ly
#this is with 2pops #first calculate per pop saf for each populatoin ../angsd -b list10 -anc hg19ancNoChr.fa -out pop1 -dosaf 1 -gl 1 ../angsd -b list11 -anc hg19ancNoChr.fa -out pop2 -dosaf 1 -gl 1 ../angsd -b list12 -anc hg19ancNoChr.fa -out pop3 -dosaf 1 -gl 1 #calculate all pairwise 2dsfs's ../misc/realSFS pop1.saf.idx pop2.saf.idx -P 24 >pop1.pop2.ml ../misc/realSFS pop1.saf.idx pop3.saf.idx -P 24 >pop1.pop3.ml ../misc/realSFS pop2.saf.idx pop3.saf.idx -P 24 >pop2.pop3.ml #prepare the fst for easy analysis etc ../misc/realSFS fst index pop1.saf.idx pop2.saf.idx pop3.saf.idx -sfs pop1.pop2.ml -sfs pop1.pop3.ml -sfs pop2.pop3.ml -fstout here #get the global estimate ../misc/realSFS fst stats here.fst.idx -> FST.Unweight[nObs:1666316]:0.017247 Fst.Weight:0.031039 -> FST.Unweight[nObs:1666316]:0.024852 Fst.Weight:0.029915 -> FST.Unweight[nObs:1666316]:0.025416 Fst.Weight:0.019600 #below is not tested that much, but seems to work ../misc/realSFS fst stats2 here.fst.idx -win 50000 -step 10000 >slidingwindow
Sliding Window output
The sliding window seems to work so we have documented it here:
- Second column is chromosome, third is center of window followed by
- fst.unweight(pop1,pop2) fst.weight(pop1,pop2) fst.unweight(pop1,pop3) fst.weight(pop1,pop3) fst.unweight(pop2,pop3) fst.weight(pop2,pop3)
(9134,58932)(14010000,14060000)(14010000,14060000) 1 14035000 0.017180 0.020672 0.024635 0.014321 0.025134 0.035149 (19115,68918)(14020000,14070000)(14020000,14070000) 1 14045000 0.017143 0.023498 0.024781 0.015975 0.025092 0.039462 (28987,78694)(14030000,14080000)(14030000,14080000) 1 14055000 0.017134 0.026566 0.024849 0.017496 0.025065 0.041826 (38964,88671)(14040000,14090000)(14040000,14090000) 1 14065000 0.017122 0.018710 0.024786 0.021365 0.025009 0.040310 (48953,98209)(14050000,14100000)(14050000,14100000) 1 14075000 0.017141 0.021010 0.024710 0.020557 0.024806 0.028282 (75,49193)(14000000,14050000)(14000000,14050000) 10 14025000 0.017165 0.074410 0.024862 0.118005 0.025311 0.003885
3 Populations simulated data
msms -ms 44 10 -t 930 -r 400 -I 3 12 14 18 -n 1 1.682020 -n 2 3.736830 -n 3 7.292050 -eg 0 2 116.010723 -eg 0 3 160.246047 -ma x 0.881098 0.561966 0.881098 x 2.797460 0.561966 2.797460 x -ej 0.028985 3 2 -en 0.028985 2 0.287184 -ema 0.028985 3 x 7.293140 x 7.293140 x x x x x -ej 0.197963 2 1 -en 0.303501 1 1 >msoutput.txt ../misc/msToGlf -in msoutput.txt -out raw -singleOut 1 -regLen 0 -depth 8 -err 0.005 ../misc/splitgl raw.glf.gz 22 1 6 >pop1.glf.gz ../misc/splitgl raw.glf.gz 22 7 13 >pop2.glf.gz ../misc/splitgl raw.glf.gz 22 14 22 >pop3.glf.gz echo \"1 250000000\" >fai.fai ../angsd -glf pop1.glf.gz -nind 6 -doSaf 1 -out pop1 -fai fai.fai -issim 1 ../angsd -glf pop2.glf.gz -nind 7 -doSaf 1 -out pop2 -fai fai.fai -issim 1 ../angsd -glf pop3.glf.gz -nind 9 -doSaf 1 -out pop3 -fai fai.fai -issim 1 ../misc/realSFS pop1.saf.idx >pop1.saf.idx.ml ../misc/realSFS pop2.saf.idx >pop2.saf.idx.ml ../misc/realSFS pop3.saf.idx >pop3.saf.idx.ml ../misc/realSFS pop1.saf.idx pop2.saf.idx -p 20 >pop1.pop2.saf.idx.ml ../misc/realSFS pop1.saf.idx pop3.saf.idx -p 20 >pop1.pop3.saf.idx.ml ../misc/realSFS pop2.saf.idx pop3.saf.idx -p 20 >pop2.pop3.saf.idx.ml ../misc/realSFS fst index pop1.saf.idx pop2.saf.idx -fstout pop1.pop2 -sfs pop1.pop2.saf.idx.ml ../misc/realSFS fst index pop1.saf.idx pop3.saf.idx -fstout pop1.pop3 -sfs pop1.pop3.saf.idx.ml ../misc/realSFS fst index pop2.saf.idx pop3.saf.idx -fstout pop2.pop3 -sfs pop2.pop3.saf.idx.ml ../misc/realSFS fst index pop1.saf.idx pop2.saf.idx pop3.saf.idx -fstout pop1.pop2.pop3 -sfs pop1.pop2.saf.idx.ml -sfs pop1.pop3.saf.idx.ml -sfs pop2.pop3.saf.idx.ml ../misc/realSFS fst stats pop1.pop2.fst.idx ../misc/realSFS fst stats pop1.pop3.fst.idx ../misc/realSFS fst stats pop2.pop3.fst.idx ../misc/realSFS fst stats pop1.pop2.pop3.fst.idx
Which gives the following output
$ ../misc/realSFS fst stats pop1.pop2.fst.idx -> You are printing the optimized SFS to the terminal consider dumping into a file -> E.g.: './realSFS fst stats pop1.pop2.fst.idx >sfs.ml.txt' -> Assuming idxname:pop1.pop2.fst.idx -> Assuming .fst.gz file: pop1.pop2.fst.gz -> FST.Unweight[nObs:51085]:0.114638 Fst.Weight:0.186980 $ ../misc/realSFS fst stats pop1.pop3.fst.idx -> You are printing the optimized SFS to the terminal consider dumping into a file -> E.g.: './realSFS fst stats pop1.pop3.fst.idx >sfs.ml.txt' -> Assuming idxname:pop1.pop3.fst.idx -> Assuming .fst.gz file: pop1.pop3.fst.gz -> FST.Unweight[nObs:51085]:0.121007 Fst.Weight:0.192111 $ ../misc/realSFS fst stats pop2.pop3.fst.idx -> You are printing the optimized SFS to the terminal consider dumping into a file -> E.g.: './realSFS fst stats pop2.pop3.fst.idx >sfs.ml.txt' -> Assuming idxname:pop2.pop3.fst.idx -> Assuming .fst.gz file: pop2.pop3.fst.gz -> FST.Unweight[nObs:51085]:0.069462 Fst.Weight:0.125002 $ ../misc/realSFS fst stats pop1.pop2.pop3.fst.idx -> You are printing the optimized SFS to the terminal consider dumping into a file -> E.g.: './realSFS fst stats pop1.pop2.pop3.fst.idx >sfs.ml.txt' -> Assuming idxname:pop1.pop2.pop3.fst.idx -> Assuming .fst.gz file: pop1.pop2.pop3.fst.gz -> FST.Unweight[nObs:51085]:0.114638 Fst.Weight:0.186980 -> FST.Unweight[nObs:51085]:0.121007 Fst.Weight:0.192111 -> FST.Unweight[nObs:51085]:0.069462 Fst.Weight:0.125002
Two populations (sim data with R implementation of functionality)
nRep <- 100
nPop1 <- 24
nPop2 <- 16
cmd <- paste("msms -ms",nPop1+nPop2,nRep,"-t 930 -r 400 -I 2",nPop1,nPop2,"0 -g 1 9.70406 -n 1 2 -n 2 1 -ma x 0.0 0.0 x -ej 0.07142857 2 1 >msoutput.txt ",sep=" ")
system(cmd)
##system("msms -ms 40 1 -t 930 -r 400 -I 2 20 20 0 -g 1 9.70406 -n 1 2 -n 2 1 -ma x 0.0 0.0 x -ej 0.07142857 2 1 >msoutput.txt ")
source("../R/readms.output.R")
to2dSFS <- function(p1.d,p2.d,nPop1,nPop2)
sapply(0:nPop1,function(x) table(factor(p2.d[p1.d==x],levels=0:nPop2)))
source("../R/readms.output.R")
a<- read.ms.output(file="msoutput.txt")
p1.d <- unlist((sapply(a$gam,function(x) colSums(x[1:nPop1,]))))
p2.d <- unlist((sapply(a$gam,function(x) colSums(x[-c(1:nPop1),]))))
par(mfrow=c(1,2))
barplot(table(p1.d))
barplot(table(p2.d))
sfs.2d <- t(sapply(0:nPop1,function(x) table(factor(p2.d[p1.d==x],levels=0:nPop2))))
system("../misc/msToGlf -in msoutput.txt -out raw -singleOut 1 -regLen 0 -depth 8 -err 0.005")
system("../misc/splitgl raw.glf.gz 20 1 12 >pop1.glf.gz")
system("../misc/splitgl raw.glf.gz 20 13 20 >pop2.glf.gz")
system("echo \"1 250000000\" >fai.fai")
system("../angsd -glf pop1.glf.gz -nind 12 -doSaf 1 -out pop1 -fai fai.fai -issim 1")
system("../angsd -glf pop2.glf.gz -nind 8 -doSaf 1 -out pop2 -fai fai.fai -issim 1")
system("../misc/realSFS pop1.saf.idx >pop1.saf.idx.ml")
system("../misc/realSFS pop2.saf.idx >pop2.saf.idx.ml")
system("../misc/realSFS pop1.saf.idx pop2.saf.idx -maxIter 500 -p 20 >pop1.pop2.saf.idx.ml")
getFst<-function(est){
N1<-nrow(est)-1
N2<-ncol(est)-1
cat("N1: ",N1 ," N2: ",N2,"\n")
est0<-est
est0[1,1]<-0
est0[N1+1,N2+1]<-0
est0<-est0/sum(est0)
aMat<<-matrix(NA,nrow=N1+1,ncol=N2+1)
baMat<<-matrix(NA,nrow=N1+1,ncol=N2+1)
for(a1 in 0:(N1))
for(a2 in 0:(N2)){
p1 <- a1/N1
p2 <- a2/N2
q1 <- 1 - p1
q2 <- 1 - p2
alpha1 <- 1 - (p1^2 + q1^2)
alpha2 <- 1 - (p2^2 + q2^2)
al <- 1/2 * ( (p1-p2)^2 + (q1-q2)^2) - (N1+N2) * (N1*alpha1 + N2*alpha2) / (4*N1*N2*(N1+N2-1))
bal <- 1/2 * ( (p1-p2)^2 + (q1-q2)^2) + (4*N1*N2-N1-N2)*(N1*alpha1 + N2*alpha2) / (4*N1*N2*(N1+N2-1))
aMat[a1+1,a2+1]<<-al
baMat[a1+1,a2+1]<<-bal
## print(signif(c(a1=a1,a2=a2,p1=p1,p2=p2,al1=alpha1,al2=alpha2,al),2))
}
## unweighted average of single-locus ratio estimators
fstU <- sum(est0*(aMat/baMat),na.rm=T)
## weighted average of single-locus ratio estimators
fstW <- sum(est0*aMat,na.rm=T)/sum(est0*baMat,na.rm=T)
c(fstW=fstW,fstU=fstU)
}
> getFst(sfs.2d)
N1: 24 N2: 16
fstW fstU
0.11945801 0.08249571
est <- matrix(as.integer(scan("pop1.pop2.saf.idx.ml")),byrow=T,ncol=nPop2+1)
> getFst(est)
N1: 24 N2: 16
fstW fstU
0.11925903 0.08241461
cmd<"fst index pop1.saf.idx pop2.saf.idx -sfs pop1.pop2.saf.idx.ml -fstout testing"
system(cmd)
##view the per site 'alpha' 'beta' if you want
cmd<-"../misc/realSFS fst print testing.fst.idx |head"
##use fancy new emperical bayes
cmd<- "../misc/realSFS fst stats testing.fst.idx "
system(cmd)
-> FST.Unweight:0.083316 Fst.Weight:0.119372
Old nice version
Fst
- Generate .saf files from each population using ANGSD SFS Estimation
- using a 2D-SFS as a prior, estimated using ngs2dSFS
- using marginal spectra as priors, estimated using realSFS
PCA
More information here: https://github.com/mfumagalli/ngsTools#ngscovar
cite
If you use these methods, you should cite the m. fumagalli paper http://www.ncbi.nlm.nih.gov/pubmed/23979584