ANGSD: Analysis of next generation Sequencing Data
Latest tar.gz version is (0.938/0.939 on github), see Change_log for changes, and download it here.
Safv3: Difference between revisions
Line 21: | Line 21: | ||
##comparison | ##comparison | ||
a<- | a<-scan("newceu.saf.idx.chr1.ml") | ||
b<- | b<-as.numeric(read.table("oldceu.saf.ml")[1,]) | ||
a-b | a-b | ||
[1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 | [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 |
Revision as of 16:45, 5 February 2016
We decided to update the native simple binary double format to a much more intelligent format that allows for random access. The format is described in doc/formats.pdf.
This page will contain the impact of this new format in downstream analysis.
One population analysis
#old master angsd version: 0.801-27-ga699b44 (htslib: 1.2.1-62-g35746af) build(May 5 2015 03:38:17) #new new saf angsd version: 0.801-54-gcf1a12d-dirty (htslib: 1.2.1-62-g35746af) build(May 6 2015 23:34:27) ##old ../master/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/ceu.ricco.list -gl 1 -P 5 -out oldceu -rf rf ../master/misc/realSFS oldceu.saf 36 -nSites 213376207 -P 20 >oldceu.saf.ml ##new ../angsd/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/ceu.ricco.list -gl 1 -P 5 -out newceu -rf rf ../angsd/misc/realSFS ../nsfs/newceu.saf.idx -P 16 -r 1 >ceu.chr1 ##comparison a<-scan("newceu.saf.idx.chr1.ml") b<-as.numeric(read.table("oldceu.saf.ml")[1,]) a-b [1] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [6] 0.000000e+00 0.000000e+00 -1.248518e-10 4.059244e-10 -3.843052e-10 [11] 4.952888e-10 -2.465176e-10 7.169737e-11 0.000000e+00 0.000000e+00 [16] 0.000000e+00 0.000000e+00 -4.288667e-11 0.000000e+00 0.000000e+00 [21] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [26] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [31] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [36] 0.000000e+00 0.000000e+00 range(a-b) [1] -3.843052e-10 4.952888e-10 barplot(rbind(a,b)[,-c(1,37)],be=T,legend=c("new","old"),col=1:2)
Two population analysis
##old(master) -> angsd version: 0.801-28-gbab908a (htslib: 1.2.1-62-g35746af) build(May 9 2015 14:50:33) ##new(newsaf)-> angsd version: 0.801-61-g48f06d8-dirty (htslib: 1.2.1-62-g35746af) build(May 9 2015 08:49:40) ##old version required a run for each population, to find the intersect and then limit the analysis to the intersect. ##Here are all 4 commands ==> oldceu2.arg <== ../master/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/ceu.ricco.list -gl 1 -P 5 -out oldceu2 -r 1 -sites intersect.txt ==> oldceu.arg <== ../angsd/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/ceu.ricco.list -gl 1 -P 5 -out oldceu -r 1 ==> oldyri2.arg <== ../master/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/yri.ricco.list -gl 1 -P 5 -out oldyri2 -r 1 -sites intersect.txt ==> oldyri.arg <== ../angsd/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/yri.ricco.list -gl 1 -P 5 -out oldyri -r 1 ##with intersect found like gunzip -c oldceu.saf.pos.gz oldyri.saf.pos.gz|sort -S 50%|uniq -d|sort -k1,1 -S 50% >intersect.txt ##The old saf files are very big so we had to limit the analysis to 100mio sites ../master/misc/realSFS 2dsfs oldceu2.saf oldyri2.saf 36 52 -nSites 100000000 -P 20 >oldceu2.oldyri2.ml.100mb ##the new format is much simpler here we simply did ==> newceu.arg <== ../angsd/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/ceu.ricco.list -gl 1 -P 5 -out newceu -r 1 ==> newyri.arg <== ../angsd/angsd -anc hg19ancNoChr.fa -dosaf 1 -b /space/genomes/1000g/lowC2014/filelists/yri.ricco.list -gl 1 -P 5 -out newyri -r 1 ../angsd/misc/realSFS ../nsfs/newceu.saf.idx ../nsfs/newyri.saf.idx -P 32 -r 1 -nSites 100000000 >ceu.yri.chr1.100mb
and comparing in R
norm<-function(X) X/sum(X) a<-exp(read.table("oldceu2.oldyri2.100mb",nrow=37)) b<-norm(scan("newceu.newyri.chr1.100mb")) b<-matrix(b,ncol=53,byrow=T) > range(a-b) [1] -1.724603e-07 2.850303e-09 > png("safv3to.png") > barplot(rbind(colSums(a),colSums(b))[,-c(1,53)],be=T,main="marginal 2dsfs YRI",legend=c("safv1","safv3"),col=1:2) > dev.off() X11cairo 2 > png("safv3en.png") > barplot(rbind(rowSums(a),rowSums(b))[,-c(1,37)],be=T,main="marginal 2dsfs CEU",legend=c("safv1","safv3"),col=1:2) > dev.off()
This looks very nice, right?
2 population analysis with simulated data
After doing this analysis I noticed that I had put a zero too much on the -reglen option for the simulated data with invariable sites. And still the method works fine. The result is that we still find the sfs nicely eventhough we only have 1/10 of the variability that we would expect from human data. So this is very good.
##angsd new: ->-> angsd version: 0.801-51-g156039a (htslib: 1.2.1-69-gb79f40a) build(May 7 2015 15:31:53) ##angsd old: -> angsd version: 0.801-27-ga699b44 (htslib: 1.2.1-69-gb79f40a) build(May 7 2015 15:30:06) norm <- function(x) x/sum(x) if(FALSE){ ##generate data DONT RUN if(FALSE){ ##simulate data with msms nRep <- 10 nPop1 <- 24 nPop2 <- 16 cmd <- paste("msms -ms",nPop1+nPop2,nRep,"-t 930 -r 400 -I 2",nPop1,nPop2,"0 -g 1 9.70406 -n 1 2 -n 2 1 -ma x 0.0 0.0 x -ej 0.07142857 2 1 >msoutput.txt ",sep=" ") system(cmd) ##system("msms -ms 40 1 -t 930 -r 400 -I 2 20 20 0 -g 1 9.70406 -n 1 2 -n 2 1 -ma x 0.0 0.0 x -ej 0.07142857 2 1 >msoutput.txt ") source("readms.output.R") } if(FALSE){ ##use R to calculate SFS for each pop and 2dsfs source("../R/readms.output.R") a<- read.ms.output(file="msoutput.txt") p1.d <- unlist((sapply(a$gam,function(x) colSums(x[1:nPop1,])))) p2.d <- unlist((sapply(a$gam,function(x) colSums(x[-c(1:nPop1),])))) par(mfrow=c(1,2)) barplot(table(p1.d)) barplot(table(p2.d)) sfs.2d <- sapply(0:nPop1,function(x) table(factor(p2.d[p1.d==x],levels=0:nPop2))) } if(FALSE){ ##generate ANGSD inputfiles without invariable sites and run it system("../misc/msToGlf -in msoutput.txt -out raw -singleOut 1 -regLen 0 -depth 8 -err 0.005") system("../misc/splitgl raw.glf.gz 20 1 12 >pop1.glf.gz") system("../misc/splitgl raw.glf.gz 20 13 20 >pop2.glf.gz") system("echo \"1 250000000\" >fai.fai") system("../angsd -glf pop1.glf.gz -nind 12 -doSaf 1 -out pop1 -fai fai.fai -issim 1") system("../angsd -glf pop2.glf.gz -nind 8 -doSaf 1 -out pop2 -fai fai.fai -issim 1") system("../misc/realSFS pop1.saf.idx >pop1.saf.idx.ml") system("../misc/realSFS pop2.saf.idx >pop2.saf.idx.ml") system("../misc/realSFS pop1.saf.idx pop2.saf.idx >pop1.pop2.saf.idx.ml") } if(FALSE){ pop1 <- exp(scan("pop1.saf.idx.ml")) pop2 <- exp(scan("pop2.saf.idx.ml")) pop1.pop2 <- matrix(exp(scan("pop1.pop2.saf.idx.ml")),nPop1+1,byrow=T) par(mfrow=c(1,2)) barplot(rbind(norm(table(p1.d)),pop1),be=T,main="only varsites pop1") barplot(rbind(norm(table(p2.d)),pop2),be=T,main="only varsites pop2") range(norm(sfs.2d)-t(pop1.pop2)) ##[1] -0.0005150658 0.0004685074 barplot(rbind(rowSums(norm(t(sfs.2d))),rowSums(pop1.pop2)),be=T) barplot(rbind(colSums(norm(t(sfs.2d))),colSums(pop1.pop2)),be=T) } if(FALSE){ ##simulate angsd inputfiles with invariable sites and run it system("../misc/msToGlf -in msoutput.txt -out raw -singleOut 1 -regLen 10000000 -depth 8 -err 0.005") system("../misc/splitgl raw.glf.gz 20 1 12 >pop1.glf.gz") system("../misc/splitgl raw.glf.gz 20 13 20 >pop2.glf.gz") system("echo \"1 250000000\" >fai.fai") system("../angsd -glf pop1.glf.gz -nind 12 -doSaf 1 -out pop1 -fai fai.fai -issim 1") system("../angsd -glf pop2.glf.gz -nind 8 -doSaf 1 -out pop2 -fai fai.fai -issim 1") system("../misc/realSFS pop1.saf.idx >pop1.saf.idx.ml") system("../misc/realSFS pop2.saf.idx >pop2.saf.idx.ml") system("../misc/realSFS pop1.saf.idx pop2.saf.idx >pop1.pop2.saf.idx.ml") } if(FALSE){ pop1 <- norm(exp(scan("pop1.saf.idx.ml"))[-1]) pop2 <- norm(exp(scan("pop2.saf.idx.ml"))[-1]) pop1.pop2 <- matrix(exp(scan("pop1.pop2.saf.idx.ml")),nPop1+1,byrow=T) par(mfrow=c(1,2)) barplot(rbind(norm(table(p1.d)[-1]),pop1),be=T,main="varsites pop1") barplot(rbind(norm(table(p2.d)[-1]),pop2),be=T,main="varsites pop2") pop1.pop2[1,1] <- 0 pop1.pop2[nrow(pop1.pop2),ncol(pop1.pop2)] <- 0 pop1.pop2 <- norm(pop1.pop2) range(norm(sfs.2d)-t(pop1.pop2)) #[1] -0.0005047007 0.0007018686 barplot(rbind(rowSums(norm(t(sfs.2d))),rowSums(pop1.pop2)),be=T) barplot(rbind(colSums(norm(t(sfs.2d))),colSums(pop1.pop2)),be=T) } if(FALSE){ ##just redo the angsd and optimization ##git checkout master ;make clean;make system("../angsd -glf pop1.glf.gz -nind 12 -doSaf 1 -out pop1 -fai fai.fai -issim 1 -P 10") system("../angsd -glf pop2.glf.gz -nind 8 -doSaf 1 -out pop2 -fai fai.fai -issim 1 -P 10") system("../misc/realSFS pop1.saf 24 -P 60 >pop1.saf.idx.ml") system("../misc/realSFS pop2.saf 16 -P 60 >pop2.saf.idx.ml") system("../misc/realSFS 2dsfs pop1.saf pop2.saf 24 16 -P 60 >pop1.pop2.saf.idx.ml") } if(FALSE){ pop1 <- norm(exp(scan("pop1.saf.idx.ml"))[-1]) pop2 <- norm(exp(scan("pop2.saf.idx.ml"))[-1]) pop1.pop2 <- matrix(exp(scan("pop1.pop2.saf.idx.ml")),nPop1+1,byrow=T) par(mfrow=c(1,2)) barplot(rbind(norm(table(p1.d)[-1]),pop1),be=T,main="varsites pop1") barplot(rbind(norm(table(p2.d)[-1]),pop2),be=T,main="varsites pop2") pop1.pop2[1,1] <- 0 pop1.pop2[nrow(pop1.pop2),ncol(pop1.pop2)] <- 0 pop1.pop2 <- norm(pop1.pop2) range(norm(sfs.2d)-t(pop1.pop2)) ## [1] -0.0005046856 0.0007019217 } }