CATS: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| (12 intermediate revisions by the same user not shown) | |||
| Line 3: | Line 3: | ||
| R package for power estimation for a two-stage genome-wide association design. This is a modification of the code from Skol et al 2006, nat genet. so that the relative risk, case-control ratios and allele frequencies are allowed to vary between stages. | R package for power estimation for a two-stage genome-wide association design. This is a modification of the code from Skol et al 2006, nat genet. so that the relative risk, case-control ratios and allele frequencies are allowed to vary between stages. | ||
| = cite = | |||
| <pre> | |||
|  Skol, AD, Scott, LJ, Abecasis, GR, Boehnke, M (2006). Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet., 38, 2:209-13. | |||
| </pre> | |||
| = Download and installation = | = Download and installation = | ||
| [http://popgen.dk/software/download/CATS/CATS_1. | This package only seems to work on linux. | ||
| [http://popgen.dk/software/download/CATS/CATS_1.02.tar.gz Software version 1.02] | |||
| [http://popgen.dk/software/download/CATS/CATS-manual.pdf manual] | [http://popgen.dk/software/download/CATS/CATS-manual.pdf manual] | ||
| install R package from command line | |||
| <pre> | |||
| wget http://popgen.dk/software/download/CATS/CATS_1.02.tar.gz | |||
| R CMD INSTALL CATS_1.02.tar.gz | |||
| </pre> | |||
| = run in R = | |||
| <pre> | |||
| library(CATS) | |||
| cats(freq=0.2,ncases=500,ncases2=500,ncontrols=1000,ncontrols2=1000,risk=1.5,multiplicative=1) | |||
| Expected Power is; | |||
|                    For a one-stage study = 0.94 | |||
|       For first stage in two-stage study = 0.972 | |||
| For second stage in replication analysis = 0.784 | |||
|     For second stage in a joint analysis = 0.929 | |||
|                                       pi = 0.5 | |||
| </pre> | |||
| = plot examples = | = plot examples = | ||
| ====  | ==== Which design is better ==== | ||
| [[File:catsFig1.png|thumb]] | |||
| <pre> | <pre> | ||
| library(CATS) | library(CATS) | ||
| rr<-seq(1,2,by=0.05) | rr<-seq(1,2,by=0.05) | ||
| maf<-c(0.05,0.1,0.2,0.5) | maf<-c(0.05,0.1,0.2,0.5) | ||
| c2<-curve.cats(rr,maf,ncases=600,ncontrols=600,ncases2=600,ncontrols2=600,alpha=0.000001,prevalence=0.01); | c2<-curve.cats(rr,maf,ncases=600,ncontrols=600,ncases2=600, | ||
| ncontrols2=600,alpha=0.000001,prevalence=0.01); | |||
| plot(c2,type="One",main="power2",ylab="Power",xlab="RR",file=NULL,col=1:4) | plot(c2,type="One",main="power2",ylab="Power",xlab="RR",file=NULL,col=1:4) | ||
| Line 24: | Line 55: | ||
| lines.cats(c2,type="First",lty=4) | lines.cats(c2,type="First",lty=4) | ||
| legend("left",c("One stage","Joint","Relication","First Stage"),lty=1:4,bty="n") | legend("left",c("One stage","Joint","Relication","First Stage"),lty=1:4,bty="n") | ||
| </pre> | |||
| ==== Number of SNPs for replication ==== | |||
| [[File:catsFig2.png|thumb]] | |||
| <pre> | |||
| library(CATS) | |||
|      power.J96<-c() | |||
|      power.J1536<-c() | |||
|      RR<-seq(1.1,1.5,by=0.025) | |||
|      maf=c(5,10,20,50)/100 | |||
| for(tal2 in 1:length(maf)){ | |||
|      J1<-c() | |||
|      J2<-c() | |||
|      for(tal in 1:length(RR)){ | |||
|        temp<-cats(freq=maf[tal2],ncases=1500,ncontrols=1500,ncases2=2000, | |||
| ncontrols2=2000,risk=RR[tal],pimarkers = 96/300000,alpha=0.05/300000) | |||
|        J1[tal]<-temp$P.joint | |||
|        temp<-cats(freq=maf[tal2],ncases=1500,ncontrols=1500,ncases2=2000, | |||
| ncontrols2=2000,risk=RR[tal],pimarkers = 1536/300000,alpha=0.05/300000) | |||
|        J2[tal]<-temp$P.joint | |||
|      } | |||
|   power.J96<-cbind(power.J96,J1) | |||
|   power.J1536<-cbind(power.J1536,J2) | |||
| } | |||
| col=1:length(maf) | |||
| plot(RR,power.J1536[,1],type=type,lwd=2,ylab="Power",main="Multiplicative model, | |||
|  1500:1500, 2000:2000",col=col[1],ylim=0:1) | |||
| for(tal2 in 2:length(maf)){ | |||
|      lines(RR,power.J1536[,tal2],lwd=2,col=col[tal2],type=type) | |||
| } | |||
| for(tal2 in 1:length(maf)){ | |||
|      lines(RR,power.J96[,tal2],lwd=2,col=col[tal2],type=type,lty=2) | |||
| } | |||
|       legend("bottomright",c(paste("MAF=",c(maf),", rep=1536"),paste("MAF=",c(maf),", rep=96")),col=col,lwd=2,bty="n",lty=c(rep(1,length(maf)),rep(2,length(maf)))) | |||
| </pre> | |||
| ==== heatmap of power ==== | |||
| [[File:catsFig3.png|thumb]] | |||
| <pre> | |||
| library(CATS) | |||
| rr<-seq(1,2,by=0.025) | |||
| c<-super.cats(rr,by=length(rr),ncases=765,ncontrols=1274,ncases2=100,ncontrols2=100, | |||
| alpha=0.001,prevalence=0.01); | |||
| plot(c,main="power",file=NULL) | |||
| </pre> | |||
| ==== design and MAF ==== | |||
| [[File:catsFig4.png|thumb]] | |||
| <pre> | |||
| library(CATS) | |||
| rr<-seq(1,2,by=0.05) | |||
| maf<-c(0.05,0.1,0.2,0.5) | |||
| c2<-curve.cats(rr,maf,ncases=600,ncontrols=600,ncases2=600,ncontrols2=600, | |||
| alpha=0.000001,prevalence=0.01); | |||
| plot(c2,type="One",main="power2",ylab="Power",xlab="RR",file=NULL,col=1:4) | |||
| lines.cats(c2,type="Replication",lty=3) | |||
| lines.cats(c2,type="Joint",lty=2) | |||
| lines.cats(c2,type="First",lty=4) | |||
| legend("left",c("One stage","Joint","Relication","First Stage"),lty=1:4,bty="n") | |||
| </pre> | </pre> | ||
Latest revision as of 08:28, 4 September 2017
joint power of a non-symetric two stage GWA design
R package for power estimation for a two-stage genome-wide association design. This is a modification of the code from Skol et al 2006, nat genet. so that the relative risk, case-control ratios and allele frequencies are allowed to vary between stages.
cite
Skol, AD, Scott, LJ, Abecasis, GR, Boehnke, M (2006). Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet., 38, 2:209-13.
Download and installation
This package only seems to work on linux.
install R package from command line
wget http://popgen.dk/software/download/CATS/CATS_1.02.tar.gz R CMD INSTALL CATS_1.02.tar.gz
run in R
library(CATS)
cats(freq=0.2,ncases=500,ncases2=500,ncontrols=1000,ncontrols2=1000,risk=1.5,multiplicative=1)
Expected Power is;
                   For a one-stage study = 0.94
      For first stage in two-stage study = 0.972
For second stage in replication analysis = 0.784
    For second stage in a joint analysis = 0.929
                                      pi = 0.5
plot examples
Which design is better

library(CATS)
rr<-seq(1,2,by=0.05)
maf<-c(0.05,0.1,0.2,0.5)
c2<-curve.cats(rr,maf,ncases=600,ncontrols=600,ncases2=600,
ncontrols2=600,alpha=0.000001,prevalence=0.01);
plot(c2,type="One",main="power2",ylab="Power",xlab="RR",file=NULL,col=1:4)
lines.cats(c2,type="Replication",lty=3)
lines.cats(c2,type="Joint",lty=2)
lines.cats(c2,type="First",lty=4)
legend("left",c("One stage","Joint","Relication","First Stage"),lty=1:4,bty="n")
Number of SNPs for replication

library(CATS)
     power.J96<-c()
     power.J1536<-c()
     RR<-seq(1.1,1.5,by=0.025)
     maf=c(5,10,20,50)/100
for(tal2 in 1:length(maf)){
     J1<-c()
     J2<-c()
     for(tal in 1:length(RR)){
       temp<-cats(freq=maf[tal2],ncases=1500,ncontrols=1500,ncases2=2000,
ncontrols2=2000,risk=RR[tal],pimarkers = 96/300000,alpha=0.05/300000)
       J1[tal]<-temp$P.joint
       temp<-cats(freq=maf[tal2],ncases=1500,ncontrols=1500,ncases2=2000,
ncontrols2=2000,risk=RR[tal],pimarkers = 1536/300000,alpha=0.05/300000)
       J2[tal]<-temp$P.joint
     }
  power.J96<-cbind(power.J96,J1)
  power.J1536<-cbind(power.J1536,J2)
}
col=1:length(maf)
plot(RR,power.J1536[,1],type=type,lwd=2,ylab="Power",main="Multiplicative model,
 1500:1500, 2000:2000",col=col[1],ylim=0:1)
for(tal2 in 2:length(maf)){
     lines(RR,power.J1536[,tal2],lwd=2,col=col[tal2],type=type)
}
for(tal2 in 1:length(maf)){
     lines(RR,power.J96[,tal2],lwd=2,col=col[tal2],type=type,lty=2)
}
      legend("bottomright",c(paste("MAF=",c(maf),", rep=1536"),paste("MAF=",c(maf),", rep=96")),col=col,lwd=2,bty="n",lty=c(rep(1,length(maf)),rep(2,length(maf))))
heatmap of power

library(CATS) rr<-seq(1,2,by=0.025) c<-super.cats(rr,by=length(rr),ncases=765,ncontrols=1274,ncases2=100,ncontrols2=100, alpha=0.001,prevalence=0.01); plot(c,main="power",file=NULL)
design and MAF

library(CATS)
rr<-seq(1,2,by=0.05)
maf<-c(0.05,0.1,0.2,0.5)
c2<-curve.cats(rr,maf,ncases=600,ncontrols=600,ncases2=600,ncontrols2=600,
alpha=0.000001,prevalence=0.01);
plot(c2,type="One",main="power2",ylab="Power",xlab="RR",file=NULL,col=1:4)
lines.cats(c2,type="Replication",lty=3)
lines.cats(c2,type="Joint",lty=2)
lines.cats(c2,type="First",lty=4)
legend("left",c("One stage","Joint","Relication","First Stage"),lty=1:4,bty="n")