PCAngsdTutorial: Difference between revisions
(47 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
<code> | <code> | ||
PCANGSD=~/Software/pcangsd | PCANGSD=~/Software/pcangsd/pcangsd.py | ||
</code> | </code> | ||
Line 20: | Line 20: | ||
<code>mkdir Demo</code> | <code>mkdir Demo</code> | ||
<code>mkdir Data</code> | <code>mkdir Demo/Data</code> | ||
<code>mkdir Results</code> | <code>mkdir Demo/Results</code> | ||
==== Set the paths to your local directories ==== | ==== Set the paths to your local directories ==== | ||
Line 50: | Line 49: | ||
To download the files and move them to your input folder (for example, $IN_DIR): | To download the files and move them to your input folder (for example, $IN_DIR): | ||
<code>wget popgen.dk/software/download/NGSadmix/data/Demo1input.gz</code> | <code>wget popgen.dk/software/download/NGSadmix/data/Demo1input.gz</code> | ||
Line 59: | Line 58: | ||
<code>mv Demo1pop.info $IN_DIR</code> | <code>mv Demo1pop.info $IN_DIR</code> | ||
==== View the genotype likelihood beagle file ==== | ==== View the genotype likelihood beagle file ==== | ||
Line 90: | Line 87: | ||
==== Estimating Individual Allele Frequencies ==== | ==== Estimating Individual Allele Frequencies ==== | ||
<code>$PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/ | <code>python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_1</code> | ||
Plot the results in R | Plot the results in R | ||
Line 96: | Line 93: | ||
<pre> | <pre> | ||
#open R | #open R | ||
pop<-read.table(" | pop<-read.table("Demo/Data/Demo1pop.info") | ||
C <- as.matrix(read.table(" | C <- as.matrix(read.table("Demo/Results/Demo1PCANGSD_1.cov")) | ||
e <- eigen(C) | e <- eigen(C) | ||
Line 116: | Line 113: | ||
This is the same as using the first iteration of the algorithm. | This is the same as using the first iteration of the algorithm. | ||
<code>$PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/ | <code>python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_2 -iter 0</code> | ||
Plot the results in R | Plot the results in R | ||
Line 122: | Line 119: | ||
<pre> | <pre> | ||
#open R | #open R | ||
pop<-read.table(" | pop<-read.table("Demo1pop.info") | ||
C <- as.matrix(read.table(" | C <- as.matrix(read.table("Demo1PCANGSD_2.cov")) | ||
e <- eigen(C) | e <- eigen(C) | ||
Line 137: | Line 134: | ||
<code>evince PCAngsd2.pdf</code> | <code>evince PCAngsd2.pdf</code> | ||
==== Admixture based on | ==== Admixture based on two PC ==== | ||
Let's try to use the PCA to infer admixture proportions based on the first 2 principal components. For the optimization we will use a small penalty on the admixture proportions (alpha). | Let's try to use the PCA to infer admixture proportions based on the first 2 principal components. For the optimization we will use a small penalty on the admixture proportions (alpha). | ||
<code>$PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/ | <code>python $PCANGSD -beagle $IN_DIR/Demo1input.gz -e 2 -o $OUT_DIR/Demo2PCANGSD_3 -admix -admix_alpha 50</code> | ||
Plot the results in R | Plot the results in R | ||
Line 146: | Line 143: | ||
<pre> | <pre> | ||
#open R | #open R | ||
##Requires previous installation of the library RcppCNPy | |||
# | library(RcppCNPy) # Numpy library for R | ||
pop<-read.table("Demo/Data/Demo1pop.info",as.is=T) | |||
q <- npyLoad("Demo/Results/Demo2PCANGSD_3.admix.Q.npy") | |||
## order according to population | ## order according to population | ||
Line 163: | Line 163: | ||
Inbreeding in admixed samples is usually not possible to estimate using standard approaches. Let's try to estimate the inbreeding coefficient of the samples using the average allele frequency. | Inbreeding in admixed samples is usually not possible to estimate using standard approaches. Let's try to estimate the inbreeding coefficient of the samples using the average allele frequency. | ||
<code>$PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/ | <code>python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_4 -inbreed 2 -iter 0</code> | ||
Join names and results, sort the values and look at the results | Join names and results, sort the values and look at the results | ||
<code>paste | <code>paste Demo1pop.info Demo1PCANGSD_4.inbreed.npy | LC_ALL=C sort -k3g</code> | ||
The third column is an estimate of the inbreeding coefficient (allowing for negative) | The third column is an estimate of the inbreeding coefficient (allowing for negative) | ||
Line 175: | Line 175: | ||
Now let's try to estimate the inbreeding coefficient of the samples by using the individual allele frequencies predicted by the PCA | Now let's try to estimate the inbreeding coefficient of the samples by using the individual allele frequencies predicted by the PCA | ||
<code>$PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/ | <code>python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_5 -inbreed 2 </code> | ||
Join names and results, sort the values and look at the results | Join names and results, sort the values and look at the results | ||
<code>paste | <code>paste Demo1pop.info Demo1PCANGSD_5.inbreed.npy | LC_ALL=C sort -k3g</code> | ||
=== Demo 2: Selection === | === Demo 2: Selection === | ||
Line 212: | Line 212: | ||
:</table> | :</table> | ||
==== Download the | ==== Download the input and sample information files ==== | ||
A file with the positions and sample information, and a beagle file are provided: | |||
Download the files and move them to your input folder (for example, $IN_DIR): | Download the files and move them to your input folder (for example, $IN_DIR): | ||
Line 224: | Line 221: | ||
<code>wget popgen.dk/software/download/NGSadmix/data/Demo2input.gz</code> | <code>wget popgen.dk/software/download/NGSadmix/data/Demo2input.gz</code> | ||
(/home/albrecht/oldPhDCourse/PCangsd/data/eu1000g.small.beagle.gz) | |||
<code>wget popgen.dk/software/download/NGSadmix/data/Demo2sample.info</code> | <code>wget popgen.dk/software/download/NGSadmix/data/Demo2sample.info</code> | ||
(/home/albrecht/oldPhDCourse/PCangsd/data/eu1000g.sample.Info) | |||
<code>mv Demo2input.gz $IN_DIR</code> | <code>mv Demo2input.gz $IN_DIR</code> | ||
<code>mv Demo2sample.info $ | <code>mv Demo2sample.info $OUT_DIR</code> | ||
'''*ANDERS*''' | '''*ANDERS*''' | ||
==== Run PCAngsd ==== | |||
The objective is to show the differences among individuals. | |||
<code>python $PCANGSD -beagle $IN_DIR/Demo2input.gz -o $OUT_DIR/Demo2PCANGSD_1 -threads 4</code> | |||
Plot the results in R | ==== Plot the results in R ==== | ||
<pre> | <pre> | ||
## R | ## Open R | ||
cov <- as.matrix(read.table(" | |||
cov <- as.matrix(read.table("Demo2PCANGSD_1.cov")) | |||
e<-eigen(cov) | e<-eigen(cov) | ||
ID<-read.table("Demo2sample.info",head=T) | ID<-read.table("Demo2sample.info",head=T) | ||
pdf("PCAngsdDemo2_1.pdf") | |||
plot(e$vectors[,1:2],col=ID$POP) | plot(e$vectors[,1:2],col=ID$POP) | ||
Line 256: | Line 255: | ||
</pre> | </pre> | ||
Since the European individuals in 1000G are not simple homogeneous disjoint populations it is hard to use PBS/FST or similar statistics to infer selection based on | Since the European individuals in 1000G are not simple homogeneous disjoint populations, it is hard to use PBS/FST or similar statistics to infer selection based on population differences. However, PCAngsd offers a good description of the differences among individuals without having to define disjoint groups. | ||
=== Infer selection along the genome === | |||
Now let's try to use the PC to infer selection along the genome based on the PCA | Now let's try to use the PC to infer selection along the genome based on the PCA | ||
<code>$PCANGSD -beagle $IN_DIR/Demo2input.gz -o | <code>python $PCANGSD -beagle $IN_DIR/Demo2input.gz -o $OUT_DIR/Demo2PCANGSD_2 -selection -sites_save #-n $N </code> | ||
==== Plot the results ==== | |||
<pre> | <pre> | ||
library(RcppCNPy) # Numpy library for R | |||
## function for QQplot | ## function for QQplot | ||
qqchi<-function(x,...){ | qqchi<-function(x,...){ | ||
Line 274: | Line 278: | ||
### read in seleciton statistics (chi2 distributed) | ### read in seleciton statistics (chi2 distributed) | ||
s<- | s<-npyLoad("Demo2PCANGSD_2.selection.npy") | ||
## make QQ plot to QC the test statistics | ## make QQ plot to QC the test statistics | ||
qqchi(s) | qqchi(s) | ||
Line 282: | Line 287: | ||
## read positions (hg38) | ## read positions (hg38) | ||
p<-read.table(" | p<-read.table("Demo2PCANGSD_2.sites",colC=c("factor","integer"),sep="_") | ||
names(p)<-c("chr","pos") | names(p)<-c("chr","pos") | ||
## make manhatten plot | ## make manhatten plot | ||
plot(-log10(pval),col=p$chr,xlab="Chromosomes",main=" | plot(-log10(pval),col=p$chr,xlab="Chromosomes",main="Manhattan plot") | ||
## zoom into region | ## zoom into region |
Latest revision as of 17:10, 29 May 2020
We will go through some examples on how to use PCAngsd with visualization of the data.
Set the path to PCAngsd
Every time you open a new terminal window, set the paths to the program and the input file.
PCANGSD=~/Software/pcangsd/pcangsd.py
Test the link
ls $PCAngsd
Create directories
Create the directories that will be used for working:
mkdir Demo
mkdir Demo/Data
mkdir Demo/Results
Set the paths to your local directories
IN_DIR=Demo/Data
OUT_DIR=Demo/Results
Test the links
ls $IN_DIR
ls $OUT_DIR
Demo 1: Allele Frequencies
This example will perform a PCA analysis on 1000 genotype likelihoods.
Download the input and population information files
PCAngsd uses Genotype Likelihoods (GLs) in .beagle format as input. The input file has been created for you.
The population information file is also provided.
To download the files and move them to your input folder (for example, $IN_DIR):
wget popgen.dk/software/download/NGSadmix/data/Demo1input.gz
wget popgen.dk/software/download/NGSadmix/data/Demo1pop.info
mv Demo1input.gz $IN_DIR
mv Demo1pop.info $IN_DIR
View the genotype likelihood beagle file
- In general, the first three columns of a beagle file contain marker name and the two alleles, allele1 and allele2, present in the locus (in beagle A=0, C=1, G=2, T=3). All following columns contain genotype likelihoods (three columns for each individual: first GL for homozygote for allele1, then GL for heterozygote and then GL for homozygote for allele2). Note that the GL values sum to one per site for each individual. This is just a normalization of the genotype likelihoods in order to avoid underflow problems in the beagle software, but it does not mean that they are genotype probabilities.
- In order to see the first 10 columns and 10 lines of the input file, type:
gunzip -c $IN_DIR/Demo1input.gz | head -n 10 | cut -f 1-10 | column -t
- Use this command to count the number of lines of the input file. The number of lines, indicates the number of loci for which there are GLs plus one (as the command includes the count of the header line):
gunzip -c $IN_DIR/Demo1input.gz | wc -l
View population information file
To view a summary of the population information file, cut the first column, sort and count:
cut -f 1 -d " " $IN_DIR/Demo1pop.info | sort | uniq -c
Lets make a population label file and place it in the output directory
cut -f1 -d" " $IN_DIR/Demo1pop.info > $OUT_DIR/poplabel
Run PCAngsd
The program estimates the covariance matrix that can be used for PCA.
Estimating Individual Allele Frequencies
python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_1
Plot the results in R
#open R pop<-read.table("Demo/Data/Demo1pop.info") C <- as.matrix(read.table("Demo/Results/Demo1PCANGSD_1.cov")) e <- eigen(C) pdf("PCAngsd1.pdf") plot(e$vectors[,1:2],col=pop[,1],xlab="PC1",ylab="PC2", main="individual allele frequency") legend("top",fill=1:5,levels(pop[,1])) dev.off() ## close R
To view the plot, type:
evince PCAngsd1.pdf
Without Estimating Individual Allele Frequencies
Try the same analysis but without estimating individual allele frequencies. This is the same as using the first iteration of the algorithm.
python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_2 -iter 0
Plot the results in R
#open R pop<-read.table("Demo1pop.info") C <- as.matrix(read.table("Demo1PCANGSD_2.cov")) e <- eigen(C) pdf("PCAngsd2.pdf") plot(e$vectors[,1:2],col=pop[,1],xlab="PC1",ylab="PC2",main="joint allele frequency") legend("top",fill=1:5,levels(pop[,1])) dev.off() ## close R
To view the plot, type:
evince PCAngsd2.pdf
Admixture based on two PC
Let's try to use the PCA to infer admixture proportions based on the first 2 principal components. For the optimization we will use a small penalty on the admixture proportions (alpha).
python $PCANGSD -beagle $IN_DIR/Demo1input.gz -e 2 -o $OUT_DIR/Demo2PCANGSD_3 -admix -admix_alpha 50
Plot the results in R
#open R ##Requires previous installation of the library RcppCNPy library(RcppCNPy) # Numpy library for R pop<-read.table("Demo/Data/Demo1pop.info",as.is=T) q <- npyLoad("Demo/Results/Demo2PCANGSD_3.admix.Q.npy") ## order according to population ord<-order(pop[,1]) barplot(t(q)[,ord],col=2:10,space=0,border=NA,xlab="Individuals",ylab="Admixture proportions") text(tapply(1:nrow(pop),pop[ord,1],mean),-0.05,unique(pop[ord,1]),xpd=T) abline(v=cumsum(sapply(unique(pop[ord,1]),function(x){sum(pop[ord,1]==x)})),col=1,lwd=1.2) ## close R
Inbreeding in the admixed individuals
Inbreeding in admixed samples is usually not possible to estimate using standard approaches. Let's try to estimate the inbreeding coefficient of the samples using the average allele frequency.
python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_4 -inbreed 2 -iter 0
Join names and results, sort the values and look at the results
paste Demo1pop.info Demo1PCANGSD_4.inbreed.npy | LC_ALL=C sort -k3g
The third column is an estimate of the inbreeding coefficient (allowing for negative)
Inbreeding with individual allele frequencies
Now let's try to estimate the inbreeding coefficient of the samples by using the individual allele frequencies predicted by the PCA
python $PCANGSD -beagle $IN_DIR/Demo1input.gz -o $OUT_DIR/Demo1PCANGSD_5 -inbreed 2
Join names and results, sort the values and look at the results
paste Demo1pop.info Demo1PCANGSD_5.inbreed.npy | LC_ALL=C sort -k3g
Demo 2: Selection
For very resent selection we can look within closely related individuals, for example within Europeans.
The objective is to use PCAngsd to estimate the covariance matrix while jointly estimating the individual allele frequencies.
Data file:
- Genotype likelihoods in Beagle format
- ~150k random SNPs with maf > 5%
- Four EU populations with ~100 individuals in each
CEU European (mostly British) GBR Great Britain IBS Iberian/Spain TSI Italien
Download the input and sample information files
A file with the positions and sample information, and a beagle file are provided:
Download the files and move them to your input folder (for example, $IN_DIR):
*ANDERS*
wget popgen.dk/software/download/NGSadmix/data/Demo2input.gz
(/home/albrecht/oldPhDCourse/PCangsd/data/eu1000g.small.beagle.gz)
wget popgen.dk/software/download/NGSadmix/data/Demo2sample.info
(/home/albrecht/oldPhDCourse/PCangsd/data/eu1000g.sample.Info)
mv Demo2input.gz $IN_DIR
mv Demo2sample.info $OUT_DIR
*ANDERS*
Run PCAngsd
The objective is to show the differences among individuals.
python $PCANGSD -beagle $IN_DIR/Demo2input.gz -o $OUT_DIR/Demo2PCANGSD_1 -threads 4
Plot the results in R
## Open R cov <- as.matrix(read.table("Demo2PCANGSD_1.cov")) e<-eigen(cov) ID<-read.table("Demo2sample.info",head=T) pdf("PCAngsdDemo2_1.pdf") plot(e$vectors[,1:2],col=ID$POP) legend("topleft",fill=1:4,levels(ID$POP))
Since the European individuals in 1000G are not simple homogeneous disjoint populations, it is hard to use PBS/FST or similar statistics to infer selection based on population differences. However, PCAngsd offers a good description of the differences among individuals without having to define disjoint groups.
Infer selection along the genome
Now let's try to use the PC to infer selection along the genome based on the PCA
python $PCANGSD -beagle $IN_DIR/Demo2input.gz -o $OUT_DIR/Demo2PCANGSD_2 -selection -sites_save #-n $N
Plot the results
library(RcppCNPy) # Numpy library for R ## function for QQplot qqchi<-function(x,...){ lambda<-round(median(x)/qchisq(0.5,1),2) qqplot(qchisq((1:length(x)-0.5)/(length(x)),1),x,ylab="Observed",xlab="Expected",...);abline(0,1,col=2,lwd=2) legend("topleft",paste("lambda=",lambda)) } ### read in seleciton statistics (chi2 distributed) s<-npyLoad("Demo2PCANGSD_2.selection.npy") ## make QQ plot to QC the test statistics qqchi(s) # convert test statistic to p-value pval<-1-pchisq(s,1) ## read positions (hg38) p<-read.table("Demo2PCANGSD_2.sites",colC=c("factor","integer"),sep="_") names(p)<-c("chr","pos") ## make manhatten plot plot(-log10(pval),col=p$chr,xlab="Chromosomes",main="Manhattan plot") ## zoom into region w<-range(which(pval<1e-7)) + c(-100,100) keep<-w[1]:w[2] plot(p$pos[keep],-log10(pval[keep]),col=p$chr[keep],xlab="HG38 Position chr2") ## see the position of the most significant SNP p$pos[which.max(s)]