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Standard measures of linkage disequilibrium (LD) are affected by admixture and population structure, such that loci that are not in LD 
within each ancestral population appear linked when considered jointly across the populations. The influence of population structure 
on LD can cause problems for downstream analysis methods, in particular those that rely on LD pruning or clumping. To address this 
issue, we propose a measure of LD that accommodates population structure using the top inferred principal components. We estimate 
LD from the correlation of genotype residuals and prove that this LD measure remains unaffected by population structure when analyzing 
multiple populations jointly, even with admixed individuals. Based on this adjusted measure of LD, we can perform LD pruning to remove 
the correlation between markers for downstream analysis. Traditional LD pruning is more likely to remove markers with high differences 
in allele frequencies between populations, which biases measures for genetic differentiation and removes markers that are not in LD in 
the ancestral populations. Using data from moderately differentiated human populations and highly differentiated giraffe populations 
we show that traditional LD pruning biases FST and principal component analysis (PCA), which can be alleviated with the adjusted LD 
measure. In addition, we show that the adjusted LD leads to better PCA when pruning and that LD clumping retains more sites with 
the retained sites having stronger associations.
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Introduction
Linkage disequilibrium (LD) is a measure of nonrandom associ-
ation between alleles at different sites. In a homogeneous popula-
tion, if the frequency of a haplotype carrying a particular pair of 
alleles is equal to the product of the frequencies of the two alleles, 
then the two alleles are independent of each other and are said to 
be in linkage equilibrium; otherwise, there is some degree of LD 
between the two alleles.

Drift and mutation will cause LD, whereas recombination 
tends to break it down. Therefore, alleles at sites located close to 
each other on the genome are likely to be in high LD since recom-
bination events between close sites are rare. Conversely, alleles at 
sites located far apart or on different chromosomes generally 
have low levels of LD. However, various other biological processes 
create and maintain LD, including selection, inbreeding, and 
population structure (Slatkin 2008). In this study, we focus on 
the latter, where differences in allele frequencies among two or 
more homogeneous populations cause LD in heterogeneous popu-
lations obtained by mixing the homogeneous populations (Nei 
and Li 1973; Pfaff et al. 2001). LD created in this way may be ob-
served at long genetic distances, including between chromo-
somes, and may change the baseline signal of no LD away from 
zero.

Accurate assessment of LD levels is important in many contexts. 
For example, the presence of LD is at the heart of genome-wide 

association studies (GWAS), where the position of a nongenotyped 
causal SNP might be detected from LD patterns in a subset of gen-
otyped SNPs, using a SNP-chip (Bush and Moore 2012). However, if 
multiple SNPs are in LD with a putative causal SNP, then it might be 
difficult to infer the position of the causal SNP with accuracy. 
Furthermore, the overall pattern of LD itself is of interest, since 
the way LD decays as a function of chromosomal distance is in-
formative about the effective population size through time 
(Tenesa et al. 2007; Waples et al. 2016; Santiago et al. 2020) and the 
timing of admixture events (Moorjani et al. 2011; Loh et al. 2013). 
Therefore, it is tantamount to have a reliable assessment of LD le-
vels from empirical samples.

Moreover, a wide variety of population genetic analyses as-
sumes that sites are unlinked or are in low LD; see for example 
(Meisner and Albrechtsen 2022) in the case of admixture infer-
ence, and (Abdellaoui et al. 2013; Meisner and Albrechtsen 2022) 
in the context of detecting population structure using principal 
component analysis (PCA). Various methods exist to handle this 
issue; the most popular being LD pruning, where SNPs are re-
moved such that all SNP pairs within a certain distance have esti-
mated LD below a predefined threshold. However, if the estimated 
level of LD is wrong, one might remove or maintain the wrong 
SNPs too. In a sample consisting of individuals from multiple po-
pulations, SNPs with large differences in sub-population allele fre-
quencies are more likely to be pruned away.
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This is sometimes referred to as the two-locus Wahlund effect 
(Nei and Li 1973; Sinnock 1975; Waples and England 2011). 
Downstream analyses are also affected by this. For example, mea-
sures of population differentiation such as the fixation index (FST) 
(Li et al. 2019) become unreliable, and a range of other methods 
that quantify genetic difference turn untrustworthy as well, as we 
show in this study.

We address the above problems by introducing a true (theoret-
ical) measure of population LD and a true measure of sample LD, 
based on an arbitrary evolutionary model. Secondly, we propose a 
way to estimate the sample LD and the population LD, and show 
how this leads to an analog of Pearson’s correlation measure. In 
essence, the standard Pearson’s correlation measure is the correl-
ation coefficient between the residuals, calculated under the as-
sumption of a homogeneous population. If this is not the case, 
we calculate the residuals under the proposed model, for example 
a model with population structure.

We apply the theory and method to a standard model of popula-
tion structure (Pritchard et al. 2000; Alexander et al. 2009) and use 
PCA to estimate parameters and to predict individual genotypes. 
Then, we calculate the residual differences between observed and 
predicted genotypes to calculate the LD score. Using real data 
from populations with moderate differentiation such as humans, 
and high differentiation such as giraffes, we show that Pearson’s 
standard LD measure is inflated by population structure, which 
causes biases in downstream analyses. We demonstrate that our 
proposed adjusted LD measure greatly reduces these biases.

Methods
Standard LD measures
For measuring LD between SNPs in a homogeneous population, 
standard statistics are based on haplotype frequencies (Hill and 
Robertson 1968). Given two diallelic SNPs at position s and t, the 
(theoretical or true) haplotype covariance is

(Dstd)st = pst − pspt, 

where pst is the probability of having both reference alleles at po-
sitions s and t, and ps and pt are the probabilities of having the ref-
erence allele at s and t, respectively. This measure is then used to 
define the haplotype squared correlation as

(ρ2
std)st =

(Dstd)2st

(Dstd)ss(Dstd)tt
.

These two quantities might then be estimated using empirical 
haplotype frequencies (Weir 1997). However, both the theoretical 
quantities and the estimates fall short if the population is not 
homogeneous but has structure.

LD in admixed populations
For admixed populations, we are interested in a measure of LD 
that takes into account the genetic heterogeneity between sub- 
populations. The main difference from the homogeneous case is 
that the parameters describing an individual genetic composition 
are now in part private to the individual, and depend on the spe-
cific admixture proportions of the individual, that is, Dstd and 
ρstd are no longer meaningful quantities.

We propose an ancestry adjusted measure of LD between gen-
omic sites. Since genomic data are generally unphased, the meas-
ure is defined from genotype data rather than haplotype data. 

We first present a theoretical measure of true LD and afterwards 
provide means to estimate ‘ observed genotypes.

Sample LD
Let n be the sample size and Gis, Git ∈ {0, 1, 2}, i = 1, . . . , n, be the 
number of reference alleles in two sites, s and t, respectively. 
Furthermore, let pi

st = (pi
st, pi

s, pi
t) be the parameters of individual 

i = 1, . . . , n, where pi
st is the probability that a haplotype carries 

both reference alleles (individual haplotype frequency), and similar-
ly pi

s, pi
t are individual allele frequencies for the two sites. For con-

venience, we phrase the theory in terms of unrestricted 
parameters pi

st, that could all be different. However, in practise, 
the parameters depend on an underlying model; for example, if 
the model consists of a single homogeneous population, then the 
parameters are the same for each individual, and if the model 
consists of a mixture of homogeneous sub-populations, then the 
parameters for allele frequencies are the same within each sub- 
population, while the admixture proportions are private to the indi-
vidual. As described in the section below, there are several ways to 
estimate these parameters but we suggest to use PCA. Whether 
one model or another is adopted, might subsequently influence 
how the parameters are estimated. It is however important to 
have a theoretical measure that does not rely on a particular model.

We assume the number of reference alleles in each site is a sum 
of independent parental gametic contributions Gis = H1

is + H2
is and 

Git = H1
it + H2

it. Further assuming that the two haplotypes are iden-
tically distributed, then the expression for the covariance between 
the genotype numbers is

1
2

Cov(Gis, Git |p
i
st) =

1
2

Cov(H1
is, H1

it |p
i
st) +

1
2

Cov(H2
is, H2

it |p
i
st)

= pi
st − pi

sp
i
t.

A measure of the (true) sample LD is thus the average covariance 
over all n individuals,

(Dn
adj)st =

1
2n

n

i=1

Cov(Gis, Git |p
i
st) =

1
n

n

i=1

pi
st − pi

sp
i
t

 
, (1) 

which is adjusted for the heterogeneity in the sample. Clearly, 
−1 ≤ (Dn

adj)st ≤ 1. If the parental haplotypes do not share the 

same distribution, then (1) becomes a sum over the 2n haplotypes. 
Moreover, if there are k separate sub-populations and nℓ indivi-
duals from the ℓth sub-population, our measure of population 
LD agrees with that of (Nei and Li 1973),

(Dn
adj)st =

1
n

k

ℓ=1

nℓ(Dℓ
std)st, (2) 

where Dℓ
std is the standard measure of the ℓth sub-population. 

Hence, the proposed measure of population LD also extends pre-
vious work on LD in sub-divided populations.

An adjusted squared correlation might be defined similarly to 
the standard haplotype squared correlation. If the parameter pi

st 

is the same for all the individuals, then (Dn
adj)st = (Dstd)st, which 

shows that the adjusted measure of sample LD and the standard 
measure of LD agrees in the case of a homogeneous population. In 
that case, there is no dependence on the sample size n.

Population LD
It is desirable to have a measure of LD that reflects the admixed 
population as such and is not attached to a specific sample of 
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individuals. One might imagine taking n→∞ in (1) assuming that 
the parameters pi

st for each individual follow a common distribu-
tion Pst. It is thus natural to replace the average in (1) with an ex-
pectation. For this, let pst be a random draw from Pst, and let 
Gs, Gt ∈ {0, 1, 2} be the number of reference alleles in the two sites, 
drawn according to pst. Then, we define the (true) population LD as

(Dadj)st =
1
2

E[Cov(Gs, Gt |pst)], 

where the expectation is with respect to Pst. Also, the population 
LD might be written in terms of the haplotype covariance.

The measure for the sample LD and the population LD are linked 
through the law of large numbers that says (Dn

adj)st → (Dadj)st as 
n→∞. Thus, population LD is reflected in sample LD, if the sample 
size is large enough. An adjusted squared correlation might be de-
fined similarly to the standard haplotype squared correlation.

If the distribution Pst is degenerate (always takes the same va-
lue), which is the case if the population is homogeneous, then 
(Dadj)st = (Dstd)st. Thus, the proposed measure of population LD ex-
tends the standard measure of LD. In the case of k separate sub- 
populations with relative sub-population sizes wℓ, ℓ = 1, . . . , k, 
then the population LD is a sum over the standard LDs of the sub- 
populations, similarly to (2) for the sample LD,

(Dadj)st =
k

ℓ=1

wℓ(Dℓ
std)st, (3) 

where (Dℓ
std)st is the standard LD measure of the ℓth sub- 

population. In fact, a stronger result holds.

Theorem 1. Let wℓ
st, ℓ = 1, . . . , k, be the probability that the two 

alleles of a haplotype are both from sub-population ℓ. Then, 
k

ℓ=1 wℓ
st ≤ 1, and

(Dadj)st =
k

ℓ=1

wℓ
st(D

ℓ
std)st.

Furthermore, by Jensen’s inequality, (Dadj)
2
st ≤

k
ℓ=1 wℓ

st(D
ℓ
std)2st.

The proof of Theorem 1 and the proofs of the following state-
ments can be found in the supplementary material.

Theorem 1 says that in an arbitrary admixed population, popu-
lation LD might be seen as a weighted decomposition of LD within 
the sub-populations. If each individual has genetic material from 
only one sub-population, then wℓ

st = wℓ is the relative population 
sizes, as in (3) (if your mother is from sub-population ℓ, then so is 
your father). If each individual chooses parents randomly from 
all sub-populations, then wℓ

st = (wℓ)2 is the probability to choose 
both parents from the same sub-population (if your mother is 
from sub-population ℓ, then so is your father with probability wℓ).

In particular, (Dadj)st always takes a value between the smallest 
and the largest value of (Dℓ

std)st, ℓ = 1, . . . , k. Similarly, (Dadj)
2
st is al-

ways smaller than the largest value of (Dℓ
std)2st, ℓ = 1, . . . , k. In con-

trast, there is no lower bound but 0. For example, in the case 
where there is a balanced pooling of two sub-populations with 
0 < (D1

std)st = −(D2
std)st. Then,

(Dadj)st =
1
2

(D1
std)st +

1
2

(D2
std)st = 0, 

and hence (Dadj)
2
st = 0, even though (D1

std)2
st = (D2

std)2st > 0.

Estimation of LD in admixed populations
To estimate the sample LD, we first introduce a model and some 
notation. Let G be the observed genotype data matrix of n indivi-
duals across m SNPs, where each genotype consists of two alleles, 
hence each entry of G is 0, 1, or 2. Let Πis ∈ [0, 1] be the probability 
that individual i has the reference allele at position s, so both G 
and Π are matrices of dimension n × m. Π is often called the indi-
vidual allele frequency. We model the marginal distribution of 
Gis as a binomial distribution

Gis ∼ Bin(2, Πis), 

and allow for dependence between Gis and Git (within one individ-
ual), but we do not specify a model of this explicitly. In contrast, 
we assume genotypes from different individuals are independent, 
that is, Gis and Gjt are independent for i ≠ j, given Πis and Π jt. In the 

context of the previous section, Πis = pi
s, and Πit = pi

t, whereas we 

leave unspecified the form of pi
st.

Based on this general model, we introduce an estimate of the 
ancestry adjusted sample LD by first calculating the empirical co-
variance of the n × m residual matrix,

R = G − 2Π, 

where Π is a matrix of predicted (estimated) values of Π. By sub-

tracting the expected genotype for each individual (2Π), correl-
ation between pairs of SNPs is not due to population structure, 
but to true LD. In this way, we purge the component of covariance 
generated by population structure, while keeping the linkage be-
tween SNPs. If there is no population structure in the sample, 
then the individual allele frequency is the same for all individuals. 
In this case, the residual and the residual correlation between 
pairs of SNPs are the standard measures.

The empirical covariance between two SNPs (columns of R), 
calculated from the residual matrix, further using Bessel’s correc-
tion, is an estimate of the ancestry adjusted sample LD,

(Dadj)st =
1

2(n − k)

n

i=1

(Ris − R·s)(Rit − R·t), (4) 

where R·s =
1
n
n

i=1 Ris, and k is the rank of Π. The empirical 

squared correlation, an estimate of the adjusted squared correl-
ation, is given by Pearson’s correlation calculated on the residuals, 
that is

(r2
adj)st =

(Dadj)
2
st

(Dadj)ss(Dadj)tt

. (5) 

The estimator in (4) is applicable whenever Π is estimable. We es-
timate Π assuming it has a specific structure, namely that the an-
cestry of each individual is composed of genetic material from k 
ancestral populations, where we take k to be a known parameter. 
Specifically, we assume that the matrix Π factorizes as Π = QF, 
where Q is an n × k matrix of rank k ≤ n consisting of (true) ances-
tral admixture proportions, such that the proportion of individual 

i’s genome from population ℓ is Qiℓ with 
k

ℓ=1 Qiℓ = 1; and F is an 

k × m matrix of (true) ancestral SNPs frequencies, such that the 
frequency of the reference allele of SNP s in the ancestral popula-
tion ℓ is Fℓs. Hence, the probability that an individual i has the ref-

erence allele in site s is Πis =
k

ℓ=1 QiℓFℓs. This is similar to 

Measuring LD in structured populations | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyaf009/8002559 by H
andelshøjskolens Bibliotek i Århus user on 05 M

arch 2025



admixture models proposed in the literature (Pritchard et al. 2000; 
Alexander et al. 2009) and models based on PCA (Meisner and 
Albrechtsen 2019; Meisner et al. 2021). The rank condition on Q 
is for reasons of identifiability, to be able to disentangle the admix-
ture proportions from all k ancestral populations for each 
individual.

To estimate Π = QF, different methods might be used. We dis-
tinguish between whether Q is known (e.g. when the population 
is homogeneous, k = 1 and Q is a vector of length n with only 
ones) or unknown. In the former case, we use linear regression 
to obtain an estimate of Π: 2Π = PG, where P = Q(QTQ)−1QT is an n × 
n matrix of rank k, which is the projection onto the column space 
of Q. Here, MT denotes the transpose of a matrix M. If Q is un-
known, one might use PCA to estimate Π by projecting G onto 
the first k principal components (Chen and Storey 2015; 
Conomos et al. 2016; Meisner and Albrechtsen 2019; Meisner 
et al. 2021). If so, then 2Π =PG, where P is an estimate of P (van 
Waaij et al. 2023). Alternatively, one might estimate Π by first esti-
mating Q and F, as suggested in (Pritchard et al. 2000; Alexander 
et al. 2009). In that case, an estimate of Π can be obtained either 
as Π = QF or as 2Π =PG, where P = Q(QTQ)−1QT is an estimate of P.

Whenever an estimate P of P is available, we have

Dadj =
1

2(n − k)
GT(I −P)(I − J/n)(I −P)G (6) 

(potentially with P replaced by P, if Q is known), where J is an n × n 
matrix with all entries equal to one, see Supplementary Lemma 
S1. In the case Q is known, (6) reduces to

Dadj =
1

2(n − k)
GT(I − P)G =

1
2(n − k)

GTG − (PG)TPG
 

, (7) 

using that P2 = P for a projection matrix. Since PG is an estimator of 

the expectation of G, then the second expression of Dadj above re-

sembles that of Dn
adj.

If the population is homogeneous (k = 1 and Q is a vector of 
ones), then Dn

adj agrees with the unbiased estimator of Dstd, based 
on unphased genotype data, suggested by (Ragsdale and Gravel 
2019) (there is a factor 2 missing in their expression for Δ on 
p931), and Burrow’s estimator of Dstd, also based on unphased 
genotype data (Cockerham and Weir 1977; Weir 1997). Hence, 
the estimator Dadj is an extension of known estimators for LD. 
Similarly, in the case of a sub-divided population into k separate 
sub-populations with nℓ individuals from the ℓth sub-population, 
with ℓ = 1, . . . , k, and

Q =

Q1 0 . . . 0
0 Q2 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . Qk

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

, (8) 

where Qℓ is a column vector of length nℓ with all ones, and the 0s 

are null vectors of matching lengths, then (Dadj)st agrees with the 

estimator suggested in Nei and Li (1973), when adapted to un-
phased genotype data using Burrow’s estimator.

Properties of Dadj

It remains to connect the estimated ancestry adjusted LD, Dadj, to 
the true population LD, Dadj. Under mild conditions, we show 
that the empirical LD measure Dadj stabilizes as the number of 
SNPs m become large (with fixed sample size n), and that for 

unlinked SNP pairs, it converges on average to zero. If the admix-
ture proportions are known (rather than estimated), then we 
show this average is plain zero, irrespective of the number of 
SNPs available; in accordance with our intuition that unlinked 
SNPs are not in LD (Theorem 2). In Theorem 3, we go further 
and show that if in addition, the number of individuals is large, 
then we recover the true population LD. In the following, we 
add superscripts n, m to emphasize the dependence on n, m, the 
size of the data matrix.

We explore the case where the sample size n and the matrix Q 
are fixed (none random), even though the admixture proportions 
might be known or unknown (and thus needs to be estimated). 
In that case, we simply write E[Dn,m

adj ] for the expectation of Dn,m
adj . 

On the contrary, when n is large, that is, when n→∞, we consider 
the admixture proportions of each individual as a random draw 
from the distribution given by the population.

Theorem 2. Assume Pn,m → P as m→∞ with n fixed. Then, it holds 
that

(Dn,m
adj )st →

1
2(n − k)

G·s
T(I − P)G·t for m→∞,

E[(Dn,m
adj )st]→ Cst =

1
2(n − k)

n

i=1

(I − P)i·Hst(I − P)i·
T, 

where Hst is the n × n diagonal matrix with diagonal elements 
Cov(G1s, G1t), . . . , Cov(Gns, Gnt), the LD between the two SNPs for 
each individual.

In particular, if G·s and G·t are independent, then

E[(Dn,m
adj )st]→ 0 for m→∞.

Moreover, if Q is known, then Pn,m = P and the above holds with →
replaced by = without the need of m→∞.

The limiting expression of (Dn,m
adj )st in Theorem 2 is identical 

to that of (Dn
adj)st in (7) with the same interpretation. 

Moreover, in the case where we consider the pooling of k 
separate sub-populations, with nℓ individuals in sub-population 
ℓ as in (8), Cst is the pooled covariance of each sub-population 
with the Bessel’s correction (see Supplementary Lemma S2), 
that is,

Cst =
k

ℓ=1 (nℓ − 1)(Dℓ
std)st

2(n − k)
, 

which we can compare with (3). In particular, Cst agrees with the 
sample LD Dn

adj when there is only one ancestral population.
Conditions for when Pn,m converges are given in van Waaij 

et al. (2023), as well as a comparison of the use of the different 
procedures to estimate P from estimates Π or Q of Π and 
Q, respectively. In particular, the PCA approach suggested by 
Chen and Storey (Chen and Storey 2015; Cabreros and Storey 
2019) guarantees convergence. Under additional conditions, 
the same holds for standard PCA based on the mean normal-
ized genotype data matrix (van Waaij et al. 2023). Empirically, 
convergence seems to hold irrespective the PCA approach 
used, or whether some other method, for example (Alexander 
et al. 2009), is applied to obtain Π or P. This is important be-
cause in practice on large data sets, the PCA approach of 
Chen and Storey (2015); Cabreros and Storey (2019) has severe 
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computational limitations. In data analysis, we used mean nor-
malized PCA, as this is conventionally used.

Theorem 3. If Q is known, then for any pair of SNPs s and t,

(Dn,m
adj )st → (Dadj)st for n→∞, 

the population LD.

When Q is known, as in Theorem 3, then (Dn,m
adj )st does not depend on 

m. For the case of r2
adj, defined in (5), we can extend the theorem to show 

that, if (Dadj)ss and (Dadj)tt are both nonzero,

(r2
adj)st →

(Dadj)
2
st

(Dadj)ss(Dadj)tt
for n→∞, 

the square of the population correlation.

Sample size correction for mean r2

When calculating the mean squared correlation coefficient the 
sample size becomes important because this measure is biased 
for finite sample sizes. There are several suggested methods for 
correcting this bias, but none of them perform perfectly 
(Ragsdale and Gravel 2019). We choose to use the method used 
in LD score regression (Bulik-Sullivan et al. 2015) due to its simpli-
city. The correction is given by

r̃2 = r2 −
1 − r2

n − 2
, 

where r2 is the calculated squared correlation coefficient and r̃2 is 
the bias-corrected. However, it should be noted that it is not trivial 
to correct for this bias (Ragsdale and Gravel 2019) and that other 
methods also exist that perform similarly well (Waples 2006; 
Ragsdale and Gravel 2019) in mitigating the upward bias.

Results
In the following sections, we compare adjusted LD to standard LD 
on real data. We are interested in the measures themselves as well 
as their effects on downstream analyses when used for pruning 
and clumping.

Data
To illustrate the problems with standard LD in the presence of 
population structure, we use two datasets: one with moderately 
differentiated populations and one with a large amount of differ-
entiation. In both cases, we have high-quality SNP and genotype 
calls from medium or high depth whole-genome sequencing 
data so that no prior SNP ascertainment was done other than 
quality control. An overview is shown in Fig. 1.

First, for the case of moderate population structure, we use the 
high-quality, human data from the 1000 Genomes Project 
(Byrska-Bishop et al. 2022). Specifically, we used 50 random, unre-
lated individuals from each of the CEU (Utah residents with 
Northern and Western European ancestry), YRI (Yoruba in 
Ibadan, Nigeria), and ASW (African ancestry in Southwest US) po-
pulations. The latter was chosen because the African Americans 
represent an admixed population with European and East 
African ancestry. We used PLINK (Purcell et al. 2007; Chang et al. 
2015) to subset the data and remove sites with minor allele 

frequency (MAF) less than 5 %. The resulting dataset contains ap-
proximately 10 M common variants.

Secondly, to contrast the use of the adjusted measure in the 
first dataset, we chose nonhuman data with highly differentiated 
sub-populations to exemplify a case where there is a strong pres-
ence of population structure. This second dataset consists of 
whole-genome sequencing (20 x coverage) of three populations 
of giraffes (Coimbra et al. 2021; Bertola et al. 2024), which we refer 
to as Masai (n = 5), Reticulated (n = 12), and Southern (n = 12). In 
comparison to the human dataset, the sample sizes are lower, 
and the population structure significantly greater—indeed, these 
groups might be considered different species (Bertola et al. 2024), 
though we use the term populations throughout.

Measures of LD
There are many ways to calculate LD (Ragsdale and Gravel 2019). 
We choose to focus on the squared correlation coefficient as this is 
an often used measure, and because it is used in LD pruning. We 
used the r2 obtained directly from the covariance matrix and 
when adjusting the r2, we used PCA based on mean centered gen-
otypes. However, other approaches for PCA and r2 might be used, 
but in our analysis, they performed similarly on the above data 
sets (see Supplementary Figs. S1 and S2).

We begin by comparing r2
std and r2

adj LD between variants on dif-
ferent chromosomes. As described, standard measures of LD, in-
cluding r2

std, are expected to find LD between sites on separate 
chromosomes in the presence of population structure, despite lit-
tle or no LD being present in the ancestral populations prior to 
mixing. In contrast, we expect r2

adj to be generally close to zero 
in the cross-chromosome case, since it adjusts for this effect.

To investigate, for each dataset we thinned the data on chro-
mosomes 1 and 2 to 10% and sampled 109,076 and 82,342 SNP 
pairs for human and giraffe, respectively. For each of these pairs, 
we calculated r2

std and r2
adj. The results (Fig. 1) confirm that the ad-

justed measure significantly reduces the amount of cross- 
chromosome LD measured. For example, on the giraffe dataset, 
the estimated mean r2

std is 0.19, whereas for the adjusted measure, 
the mean r2

adj is 0.018. As expected, the difference between ad-
justed and standard LD is greater on the giraffe dataset with great-
er population differentiation, but it is likewise apparent in the 
human data (Fig. 1).

We then turn to demonstrate that adjusted LD is meaningful 
within chromosomes, and not just a decreased measure of LD. 
When there is LD in the ancestral population, we expect both 
methods to capture this, but we expect standard LD to plateau 
to a higher level with increasing distance, since the relative im-
portance of population structure on r2

std is larger at longer ranges. 
This can be seen in the sample size corrected LD decay curves 
shown in Fig. 1 for both standard and adjusted r2 up to distances 
of 5 Mb. (The same data are shown without sample size correction 
in Supplementary Fig. S3. Standard LD curves for the separate po-
pulations are shown in Supplementary Figs. S4 and S5, with SNPs 
private to each population having been removed.) On the giraffe 
data, the standard LD curve is significantly shifted up relative to 
the adjusted measure. Again, the effect is less visually apparent 
on the human dataset, but we note that although smaller, the dif-
ference is due to sites that are particularly informative of popula-
tion structure and hence are expected to exert an outsize 
influence on certain analyses. We return to this point when look-
ing at pruning below.

Additional studies to explore the behavior of the method under 
adversarial conditions are also presented. First, we analyzed the 
case where the convergence of Dn,m

adj is challenged by lowering m, 
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the number of SNPs. Nevertheless, we see in Supplementary Fig. 
S6 that the LD curves for the method stay unbiased for low m. 
We can also notice the loss of smoothness for the curves, some-
thing expected considering that the amount of pairs of SNPs for 
each distance decreases drastically when, for example, 
m = 5000. Secondly, we computed Dn,m

adj for different values of k, 
the parameter given by the number of ancestral populations. 
We noticed that underestimating k can be problematic as we still 
keep the influence of the population structure on the LD measure. 
On the other hand, overestimating k, and thus using too many 
principal components, has a minor effect compared to underesti-
mating, as we can see in Supplementary Fig. S7.

Effects of pruning
The LD measure has an effect on LD pruning and analyses based 
on pruned data. To investigate, we implemented a pruning algo-
rithm like the one used in PLINK (Purcell et al. 2007). Briefly, for 
each SNP A, we consider all SNPs B in a window up to 100 kb 
ahead. For each SNP B in the window, starting with the closest, 
we calculate r2 (either adjusted or standard) and remove the 
SNP with the lowest MAF if the r2 value is above a certain thresh-
old e.g. 0.5. The process is repeated until either the starting SNP A 
is removed in this way, or the end of the window is reached, and 
the window is then moved one SNP forward. Pruning occurs sep-
arately for each chromosome.

We pruned both datasets using either r2
std or r2

adj. To see the dir-
ect effects of pruning, we then calculated the standard LD decay 
curve from the jointly pruned data. In addition, we extracted gen-
otypes from the jointly pruned data and calculated the standard 
LD curve for the common variants for each of the three popula-
tions. The resulting LD curves (Fig. 2a, without sample size correc-
tion in Supplementary Fig. S8) show that using r2

adj over r2
std has a 

large effect on the joint LD curve (where there is population struc-
ture), but a comparatively smaller effect on the curves when cal-
culating the remaining LD for each separate population. In other 
words, where there is population structure, pruning based on 
r2

std removes more LD (by standard measures) than r2
adj by remov-

ing sites in LD due to population differentiation while both meth-
ods remove a similar amount of within population LD.

As a consequence of removing sites in LD due to population 
structure, standard pruning also removes more sites than ad-
justed pruning (Fig. 2b). On the giraffe dataset, more than twice 

as many sites are retained when pruning based on r2
adj compared 

to r2
std. Again, the differences on the human dataset look less stark. 

For example, only about 10 % more sites are kept after pruning by 
r2
adj on the human dataset. However, those extra sites are likely to 

be exactly those that are most informative of population struc-
ture. As a result, our ability to infer population structure will be di-
minished by standard pruning. To illustrate, we used PLINK2 
(Chang et al. 2015) to compute Hudson’s estimator of FST 

(Hudson et al. 1992; Bhatia et al. 2013) for all population pairs be-
fore and after pruning. The results, in Fig. 2c, show significant dif-
ferences in the estimates. For example, pruning based on 
standard and adjusted r2 lead to FST estimates for CEU and YRI 
of 0.119 and 0.144, respectively, compared to a value of 0.156 using 
the unpruned data. On the giraffe dataset, the deviation is more 
extreme, with FST values after standard pruning approximately 
half those resulting from adjusted pruning.

As can be seen, FST remains lower after pruning even when 
using the adjusted measure. A possible explanation, which we ru-
led out, is that this is due to the direct effects of pruning on the 1D 
frequency spectrum, shown in Supplementary Fig. S9 before and 
after pruning. To test this, we resampled sites after both standard 
and adjusted pruning in frequency bins of 0.001 to match the un-
pruned frequency spectrum (Supplementary Fig. S10). 
Recalculating FST on these resampled datasets results in broadly 
similar patterns (Supplementary Fig. S11). We note that LD prun-
ing is not typically required for standard FST calculations, so these 
results mainly serve to illustrate the differences between the 
pruning methods in the context of inferring population structure. 
However, even for FST, the effects of LD pruning are sometimes im-
portant. For instance, if we wish to infer the FST of the ancestral 
components as inferred e.g. by ADMIXTURE (Alexander et al. 
2009) software, pruning is assumed by the standard admixture 
model. To illustrate the effect of the LD adjustment in this con-
text, we ran ADMIXTURE for 10 different seeds on each of the two 
pruned datasets and recorded the FST value for the run with the 
highest log-likelihood. The results are included in Fig. 2c and 
show a similar reduction of FST when using standard LD pruning.

Based on the differences in FST and the relationship between FST 

and PCA (McVean 2009), it is expected that a PCA to be likewise af-
fected by the pruning method. Running PCA in PLINK confirms 
that this is the case on the giraffe data (Fig. 2d). As expected 
from the FST results, both methods of pruning affect the shape 

Fig. 1. Comparison of LD measures. An overview of the number of individuals in the two datasets and the three sub-populations included in each of them. 
LD decay curves of standard and adjusted r̃2. Mean r̃2 shown in bins based on a sliding window over sites up to 5 Mb apart. Standard and adjusted r̃2 were 
also calculated for 109,076 (giraffe) and 82,342 (human) randomly sampled cross-chromosome pairs of sites.
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of the principal components, though the adjusted LD pruning has 
a much smaller impact. The human data (Supplementary Fig. S12) 
show the same pattern along the first component but is harder to 
interpret along the second, since there is only one main axis of 
variation relating to population structure in the human dataset. 
In addition, the small size of both the giraffe and human datasets 
makes it hard to judge whether the eigenvectors themselves are 
impacted, or whether the pruning LD measure only influences 
the scaling.

Principal component analysis
To explore this question, we analyze the use of adjusted pruning 
for PCA on a larger and more complex human dataset. 
Specifically, based on the 1000 genomes dataset without close re-
latives (first and second degree) (Byrska-Bishop et al. 2022), we car-
ried out both standard and adjusted pruning on the common 
variants (MAF > 5%). We performed PCA on each of the resulting 
data sets, as well as on the unpruned data for comparison. For 
the adjusted LD, we chose the parameter of ancestral populations 
to be 9. This is based on the top principal components (PC) of the 

unpruned data since these capture population structure (see 
Supplementary Fig. S13), where the PCs are the orthogonal direc-
tions that best seize the variation of the data.

The top four PCs are shown in Fig. 3a and b, comparing the two 
pruning methods to the unpruned PCs. The other top PCs are 
shown in Supplementary Figs. S13 and S14 which also shows 
that our standard pruning algorithm is comparable to the one in 
PLINK (Purcell et al. 2007; Chang et al. 2015). Looking at the raw ei-
genvectors unscaled by the eigenvalues, we do see subtle differ-
ences between the pruning methods. Moreover, as we move to 
the higher PCs, we begin to see that some of the PCs are shuffled, 
i.e. that the different axes of variation are captured in different or-
der. The unpruned data also start to capture LD as indicated by lo-
cally high SNP loading. The question remains, however, whether 
these differences are meaningful and, if so, which method is 
preferable.

As a first answer to this question, Fig. 3c compares the cumula-
tive variance explained for the first 10 PCs and clearly shows that 
PCA based on adjusted pruning explains more of the variance in 
the genotype data using fewer components. While informative 

a

b

d

c

Fig. 2. Effects of pruning using different LD measures. a) Pruning is based on standard or adjusted r2, LD curve is standard r2 after pruning. Standard LD 
decay curves after pruning based on either standard or adjusted r2. The joint datasets are shown, as well as LD decay curves for the constituent 
populations extracted from the pruned datasets. b) Fraction of sites remaining after pruning. c) FST after pruning for each pair of populations, with the 
unpruned FST shown for comparison. d) PCA after pruning on the giraffe dataset, with the unpruned data included for comparison. Eigenvectors scaled by 
corresponding eigenvalue shown.
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of the structure of the decomposition overall, the variance ex-
plained measure ignores our knowledge of the population labels. 
In other words, it does not quantify how well each method cap-
tures population structure specifically. To investigate this, we ex-
amined specifically the separability and clusterability of the 26 
populations in the PCAs, taking the given population labels from 
the 1000G project as ground truth. We took two distinct ap-
proaches to this.

First, we used the mclust R package (Scrucca et al. 2023) to clus-
ter the populations using a variable number of the top PCs. For 
this, mclust does an automated model selection of different para-
metrizations of Gaussian mixtures to perform supervised cluster-
ing into the 23 population labels. Looking at the resulting 
classification errors (Fig. 3d), we see that adjusted pruning leads 
to lower classification errors for the first 5 PCs, after which the dif-
ference between adjusted and standard pruning tails off. While 
small, the benefit of adjusted pruning is consistently on the order 
of a couple of percentage points, which is a meaningful difference. 
The corresponding Brier scores are shown in Supplementary Fig. 
S15 and show a similar pattern.

Second, we use scikit-learn (Pedregosa et al. 2011) to compute 
silhouette scores (Rousseeuw 1987) as a measure of clusterability 
by comparing distances between individuals from the same or dif-
ferent populations. This score is calculated from the silhouette va-
lue of each individual, which is based on the ratio between the 
mean distance of a fixed individual to the other individuals in the 
same cluster and the mean distance to the individuals from the se-
cond closest cluster for the fixed individual. Hence, a higher silhou-
ette score means better clustering with clusters that are tighter and 
better separated among each other. As above, we varied the num-
ber of top PCs and averaged the silhouette score across all indivi-
duals, with results shown in Fig. 3e (Supplementary Fig. S16
shows the data broken down by population). Again, the results in-
dicate a consistent benefit of using adjusted LD pruning for PCA 
analysis compared to both no pruning and standard LD pruning.

Clumping
A final application for which the choice of LD measure matters is 
in the context of LD clumping. Here, each variant has an assigned 
value and the goal of LD clumping is to retain the largest subset set 

Fig. 3. PCA results on full 1000 G data set comparing no pruning, and pruning based on either standard or adjusted LD in a window of 1000 kb with a r2 

cutoff of 0.2. a, b) First four principal components, not scaled by eigenvalues. Population labels can be seen in Supplementary Figs. S13 and S14. c) The 
cumulative variance explained for the first 10 components. d) The classification error for clustering using mclust with the population labels. e) The mean 
silhouette score for clustering based on population labels.
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of unlinked variant with the highest possible values. This is often 
used in association studies where clumping is performed to obtain 
association signals that are independent from each other. This is a 
standard practice when for example performing Mendelian ran-
domization (Sanderson et al. 2022). While good methods exist for 
accounting for the effects of population structure while estimat-
ing the associations themselves (e.g. mixed models Zhou and 
Stephens 2014), these do not extend to the process of identifying 
unlinked loci afterwards. Briefly, clumping is one solution to this 
problem in which, starting from the most significant variants, 
all other variants within some distance are removed if they are 
in LD above some threshold, after which the procedure is itera-
tively applied to the next most significant variant that has not 
yet been removed. Clumping may be preferable to pruning for 
association studies, since clumping takes into account the 
inferred P-values to keep the most significant hit in each group 
of linked loci.

However, we anticipate that LD induced by population struc-
ture would serve to interfere with this process. Specifically, the 
idea is that clumping based on standard LD would discard SNPs 
that are not in LD when populations are considered separately 
and thus are associations that only appear correlated due to popu-
lation structure. For most applications, the removal of such SNPs 
is undesired as the associated ones are needlessly removed and, 
as we show, because the retained SNPs have a weaker association 
to the traits.

To investigate, we applied clumping to summary statistics of a 
cross-population BMI GWAS study (Sakaue et al. 2021) (GWAS 
catalog (Sollis et al. 2022) accession: GCST90018947). To perform 
clumping, we calculated standard and adjusted LD based on the 
1000 genomes data. We ran the clumping algorithm with various 
cutoffs on r2 (0.0005, 0.001, 0.002, 0.005, 0.01, or 0.02) and various 
maximum distances within which SNPs can be removed (1 Mb, 5  
Mb, or entire chromosomes). We refer to this procedure as ad-
justed or standard clumping, respectively, corresponding to the 
input LD measure. The r2 thresholds chosen are stringent to illus-
trate the performance for clumping for Mendelian randomization. 
For reference, the default r2 threshold used in the popular package 
TwoSampleMR (Hemani et al. 2018) is 0.001.

We find that for each combination of LD cutoff and clumping dis-
tance, adjusted clumping retains at least as many, and often more, 
association hits as standard LD (Fig. 4a). To quantify the strength of 
the association between these SNPs, Fig. 4b shows the sum of χ2 

scores for the kept SNPs, expressed as the difference between the 
two clumping methods. Across the range of LD cutoffs and clumping 
distances considered, this combined association strength of the kept 
SNPs is much higher using adjusted LD, suggesting that the quality 
of hits retained with adjusted clumping is preferable.

To visualize why adjusted LD performs better, Fig. 4c shows the 
clumped SNPs on chromosome 1 according to clumping methods 
at the 0.01 LD cutoff for the 1 Mb and entire chromosome cases (cf. 
Supplementary Fig. S17 for 5 Mb). Inspection of these figures sup-
ports the claim that where adjusted and standard clumping differ, 
adjusted clumping retains peaks with stronger associations in a 
particular group of linked signals. The case with no maximum dis-
tance clearly illustrates the explanation: during standard clump-
ing, long range LD induced by population structure removes a 
large number of hits that are independent in each of the constitu-
ent populations. Of course, this happens to a lower degree with a 
short distance cap, but this is arguably an ad hoc solution to the 
problem that adjusted clumping addresses in a more principled 
way. Moreover, as the 1 and 5 Mb cases show, setting a cap only 
partially addresses the problem. Even though the choice of 

distance seems arbitrary, it greatly influences the selection of 
which SNPs are kept with standard clumping; in comparison, ad-
justed clumping is fairly robust to the chosen cap (if any) within a 
reasonable band of LD cutoffs, as argued above.

Finally, we want to confirm that despite keeping more highly 
significant association hits, adjusted clumping removes at least 
as much LD as standard clumping in the constituent populations 
considered separately. To illustrate this, we extracted 390 indivi-
duals from Africa (ESN, GWD, MSL, YRI), Europe (CEU, GBR, IBS, 
TSI), and East Asia (CHB, CHS, JPT, KHV) and calculated standard 
r2 among all intrachromosome pairs kept by each of the two clump-
ing methods in the 1 Mb and r2 < 0.01 scenario. The corresponding 
LD distributions are indeed very similar, as seen in Fig. 4d.

Discussion
In this study, we developed the mathematical foundation of a sim-
ple to use method that provides a measure of LD. This measure 
has some desirable properties when applied to datasets with indi-
viduals from multiple populations. Most importantly, this meas-
ure does not increase when individuals from different ancestries 
are analyzed jointly, unlike standard LD. We prove that for sam-
ples that come from a mixture of k ancestral populations, then 
the expected adjusted LD is zero (Dadj = 0) if the LD in each of 
the ancestral populations is also zero (Dstd = 0 within ancestral po-
pulations). This is achieved by subtracting the predicted covari-
ance given by the population structure from the standard 
covariance matrix of the genotypes. In practice, we estimate the 
predicted covariance given by the population structure inferred 
from the top principal components. We show that, even with a fi-
nite number of individuals, the measure is unbiased as the num-
ber of SNPs goes to infinity. The estimator is also consistent such 
that, if there is no LD in the ancestral populations, then each pair-
wise adjusted LD goes to zero as the number of individuals and 
SNPs goes to infinity. When there is LD in the ancestral popula-
tions, then the adjusted LD measure is also correlated if the geno-
type covariance is bigger than what is predicted from the 
population structure. In particular, for separate sub-populations, 
the expectation of the adjusted LD is the pooled covariance of the 
ancestral populations.

We evaluate the performance of the adjusted LD based on two 
data sets. A giraffe dataset consisting of a pooling of 3 populations 
with a large amount of differentiation and a dataset of 2 moder-
ately differentiated human populations including individuals 
that are a mixture of the two. To evaluate the measures when 
there is little ancestral LD, we analyzed pairs of SNPs from differ-
ent chromosomes. As expected the standard LD is high for many 
pairs of SNPs while it stays much closer to zero for the adjusted 
LD measure.

It is well known that analyzing individuals from multiple popu-
lations jointly increases standard LD. Hence, highly differentiated 
populations such as the giraffes, have a bigger increase in stand-
ard LD compared to more similar populations like humans. The 
difference is also observed on the LD decay curves, where the ad-
justed LD curves go towards zero as the distance between markers 
increases, while the standard LD curves levels at a much higher 
value. Because the mean estimated r2 is biased upwards for finite 
sample sizes, we show results for r̃2, which is a simple correction 
based on the number of sampled individuals (Bulik-Sullivan et al. 
2015). Other methods exist that in some instances perform better 
(Waples 2006; Ragsdale and Gravel 2019). However, we choose the 
simple correction due to its simplicity, but while taking into ac-
count that standard LD decay curves for the populations 
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considered separately do not always approach 1/(n − 1) as pre-
dicted (Bulik-Sullivan et al. 2015).

Our method is not the first method that tries to overcome the 
issues of population structure when calculating LD. A previous 
study (Mangin et al. 2012) suggested first inferring the admixture 
proportions using STRUCTURE (Pritchard et al. 2000), and then 
using these as predictors in a linear model. From the linear regres-
sion, they obtain genotype residuals from which they calculate 
the correlation of residuals. This approach estimates the partial 
correlation (Lin et al. 2012) and assumes that the population struc-
ture is an observed variable. This makes the approach prone to 
noise in the estimation of the confounding variable. Also, the con-
founding variable must be linear. That is not so in our case, where 
we assume that population structure has been estimated.

Measuring LD is of interest in itself, but it is also often used to 
make datasets more appropriate for further analysis. Many meth-
ods assume that sites are independent such that there is no LD in 
the ancestral populations. This includes commonly used methods 
for inferring population structure such as ADMIXTURE (Alexander 

et al. 2009), STRUCTURE (Pritchard et al. 2000), and PCA (Patterson 
et al. 2006). However, it also includes frequent measures in popula-
tion genetics such as FST, Dxy (Nei 1973), heterozygosity, and kinship 
coefficients, which are often calculated under the assumption of no 
LD. Often it is not a big issue for the point estimates, since the cor-
relation from LD mostly affects markers located close to each 
other. Thus, the estimators can still be consistent (Wiuf 2006). 
However, the uncertainty of any estimates increases and, there-
fore, it is often recommended to perform LD pruning. This is not 
an issue for most analyses that are performed within a single 
panmictic population. However, if the samples come from multiple 
ancestral populations then standard LD pruning can cause 
biases(Malomane et al. 2018; Li et al. 2019). This is because LD is cre-
ated between alleles with different ancestral allele frequencies: the 
so-called two-locus Wahlund effect (Nei and Li 1973; Sinnock 1975; 
Waples and England 2011). Sites with a large difference in allele fre-
quency are more likely to be pruned away because their standard 
LD increases more than sites with a small difference in allele fre-
quency. Therefore, populations look genetically more similar after 

Fig. 4. Summary of stats for clumping from a multiethnic GWAS study comparing adjusted and standard LD estimated from the 1000G data. a) Inferred 
lead SNPs left after LD clumping using various r2 thresholds and maximum pairwise distances. b) Association signal after clumping as quantified by the 
difference in the sum of the χ2 statistics of the inferred lead SNPs. c) Chromosome 1 association signals colored by the LD measure that retains it when 
clumping. − log10 P−values are capped at 20 for open circles. Each SNP kept by exactly one method has an arrow showing from which SNP there was an 
association that caused the removal on the other method. For example, an adjusted clumping colored pin shows a SNP kept only with adjusted LD and 
has a standard clumping colored arrow from the SNP that removed it when using standard LD. d) Standard LD left after LD clumping among 390 
individuals from each of the African, East Asian, and European populations.
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standard LD pruning. We illustrate this issue by performing LD 
pruning on the human and giraffe populations using both the 
standard LD measure and the adjusted one. The standard LD prun-
ing removed slightly more sites than the adjusted in the human po-
pulations, while in the more differentiated giraffe populations, the 
adjusted pruning retained more than twice the number of SNPs 
compared to the standard LD pruning. However, if we calculate 
standard LD in the ancestral populations on the remaining sites 
then we see that both methods have similar amounts of standard 
LD after pruning. Thus both methods are able to greatly reduce 
the amount of ancestral LD, but the adjusted LD pruning can do 
it while retaining more SNPs. When calculating FST from the 
pruned data, we see that standard LD pruning causes a huge bias 
for the giraffe with FST values being half of the value of the un-
pruned data. The effect is also apparent in the human where FST 

is reduced by about 20%. Using the adjusted LD for pruning allevi-
ates most of this bias but there still appears to be some negative 
bias left with FST values being around 5% lower than with the un-
pruned data. This remaining bias could be due to allele frequency 
ascertainment bias which is known to bias FST (Albrechtsen et al. 
2010) and PCA. However, even if we sub-sample the pruned sites 
to match the overall allele frequency distribution (Supplementary 
Fig. S9), the bias remained (Supplementary Fig. S11).

In addition to FST, we also explored the effect on PCA analysis, 
where standard pruned data showed fewer genetic differences be-
tween populations. This is not surprising since the top eigenva-
lues are proportional with FST (McVean 2009) when analyzing 3 
populations. Nevertheless, the shape of the PCA was not affected 
for either the humans or the giraffes so in these cases the inter-
pretation from the PCA would have remained the same.

Finally, we explored the performance of LD pruning and clump-
ing on the diverse 1000 genomes project with individuals from 23 
populations. We show that the PCA is better at reflecting popula-
tion structure if the data are LD pruned, and that adjusted LD 
pruning performed better than standard LD pruning. The differ-
ence was very pronounced in the variance explained by each PC, 
but we also observed better performance in the clusterbility of 
the populations. To illustrate the advantage of adjusted LD 
clumping, we applied it to GWAS summary statistics from an eth-
nically diverse study. Standard LD clumping on this data set re-
moved independent association signals caused by the 
population structure. This can be seen when choosing large win-
dows for clumping, where many of the strong association signals 
are removed due to long distance LD induced by the population 
structure. However, even when using a smaller maximum dis-
tance, the signals that remained after clumping were weaker 
compared to using standard LD clumping.

Data availability
We implemented the adjusted LD as well as pruning and clump-
ing algorithms based on adjusted LD in the software PCAone (Li 
et al. 2023), which can be downloaded at https://github.com/ 
Zilong-Li/PCAone.

Supplemental material available at GENETICS online.

Funding
UB and CW are supported by the Independent Research Fund 
Denmark (grant number: DFF-8021-00360B). MR and AA are sup-
ported by the Independent Research Fund Denmark (grant num-
ber: DFF-0135-00211B). ZL and AA are supported by the Novo 
Nordisk Foundation (grant number: NNF20OC0061343).

Conflicts of interest
The author declares no conflict of interest.

Literature cited
Abdellaoui A, Hottenga JJ, de Knijff P, Nivard MG, Xiao X, Scheet P, 

Brooks A, Ehli EA, Hu Y, Davies GE, et al. 2013. Population struc-

ture, migration, and diversifying selection in the Netherlands. 
Eur J Hum Genet. 21(11):1277–1285. doi:10.1038/ejhg.2013.48.

Albrechtsen A, Nielsen FC, Nielsen R. 2010. Ascertainment biases in 
SNP chips affect measures of population divergence. Mol Biol 
Evol. 27(11):2534–2547. doi:10.1093/molbev/msq148.

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estima-
tion of ancestry in unrelated individuals. Genome Res. 19(9): 
1655–1664. doi:10.1101/gr.094052.109.

Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, 
Balboa RF, Meisner J, Bøggild T, Wang X, Lin L, et al. 2024. 
Giraffe lineages are shaped by major ancient admixture events. 
Curr Biol. 34(7):1576–1586. doi:10.1016/j.cub.2024.02.051.

Bhatia G, Patterson N, Sankararaman S, Price AL. 2013. Estimating 
and interpreting FST: the impact of rare variants. Genome Res. 
23(9):1514–1521. doi:10.1101/gr.154831.113.

Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, 
Daly MJ, Price AL, Neale BM. 2015. LD score regression distinguishes 
confounding from polygenicity in genome-wide association studies. 
Nat Genet. 47(3):291–295. doi:10.1038/ng.3211.

Bush WS, Moore JH. 2012. Chapter 11: Genome-wide association 
studies. PLoS Comput Biol. 8(12):e1002822. doi:10.1371/journal. 
pcbi.1002822.

Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, 
Corvelo A, Clarke WE, Musunuri R, Nagulapalli K, et al. 2022. 
High-coverage whole-genome sequencing of the expanded 1000 
genomes project cohort including 602 trios. Cell. 185(18): 

3426–3440.e19. doi:10.1016/j.cell.2022.08.004.
Cabreros I, Storey J. 2019. A likelihood-free estimator of population struc-

ture bridging admixture models and principal components analysis. 
Genetics. 212(4):1009–1029. doi:10.1534/genetics.119.302159.

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. 
Second-generation PLINK: rising to the challenge of larger and ri-
cher datasets. Gigascience. 4(1):7. doi:10.1186/s13742-015-0047-8.

Chen X, Storey J. 2015. Consistent estimation of low-dimensional la-
tent structure in high-dimensional data. arXiv:1510.03497. 
doi:10.48550/arXiv.1510.03497.

Cockerham C, Weir B. 1977. Digenic descent measures for finite po-
pulations. Genet Res (Camb). 30(2):121–147. doi:10.1017/S001667 
2300017547.

Coimbra RTF, Winter S, Kumar V, Koepfli KP, Gooley RM, Dobrynin P, 
Fennessy J, Janke A. 2021. Whole-genome analysis of giraffe sup-
ports four distinct species. Curr Biol. 31(13):2929–2938. doi:10. 
1016/j.cub.2021.04.033.

Conomos MP, Reiner AP, Weir BS, Thornton TA. 2016. Model-free es-
timation of recent genetic relatedness. Am J Hum Genet. 98(1): 
127–148. doi:10.1016/j.ajhg.2015.11.022.

Hemani G, Zheng J, Elsworth B, Wade K, Baird D, Haberland V, Laurin 
C, Burgess S, Bowden J, Langdon R, et al. 2018. The MR-Base plat-
form supports systematic causal inference across the human 
phenome. Elife. 7:e34408. doi:10.7554/eLife.34408.

Hill WG, Robertson AP. 1968. Linkage disequilibrium in finite popula-
tions. Theor Appl Genet. 38(6):226–231. doi:10.1007/BF01245622.

Hudson RR, Slatkin M, Maddison WP. 1992. Estimation of levels of 
gene flow from DNA sequence data. Genetics. 132(2):583–589. 
doi:10.1093/genetics/132.2.583.

Measuring LD in structured populations | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyaf009/8002559 by H
andelshøjskolens Bibliotek i Århus user on 05 M

arch 2025

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf009#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf009#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf009#supplementary-data
https://github.com/Zilong-Li/PCAone
https://github.com/Zilong-Li/PCAone
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf009#supplementary-data
https://doi.org/10.1038/ejhg.2013.48
https://doi.org/10.1093/molbev/msq148
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1016/j.cub.2024.02.051
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1038/ng.3211
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1016/j.cell.2022.08.004
https://doi.org/10.1534/genetics.119.302159
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.48550/arXiv.1510.03497
https://doi.org/10.1017/S0016672300017547
https://doi.org/10.1017/S0016672300017547
https://doi.org/10.1016/j.cub.2021.04.033
https://doi.org/10.1016/j.cub.2021.04.033
https://doi.org/10.1016/j.ajhg.2015.11.022
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1007/BF01245622
https://doi.org/10.1093/genetics/132.2.583


Li Z, Löytynoja A, Fraimout A, Merilä J. 2019. Effects of marker type 

and filtering criteria on qst-fst comparisons. R Soc Open Sci. 
6(11):190666. doi:10.1098/rsos.190666.

Li Z, Meisner J, Albrechtsen A. 2023. Fast and accurate out-of-core 
PCA framework for large-scale biobank data. Genome Res. 
33(9):1599–1608. doi:10.1101/gr.277525.122.

Lin CY, Xing G, Xing C. 2012. Measuring linkage disequilibrium by the 
partial correlation coefficient. Heredity (Edinb). 109(6):401–402. 
doi:10.1038/hdy.2012.54.

Loh PR, Lipson M, Patterson N, Moorjani P, Pickrell JK, Reich D, Berger 
B. 2013. Inferring admixture histories of human populations 
using linkage disequilibrium. Genetics. 193(4):1233–1254. doi:10. 
1534/genetics.112.147330.

Malomane DK, Reimer C, Weigend S, Weigend A, Sharifi AR, Simianer 
H. 2018. Efficiency of different strategies to mitigate ascertainment 
bias when using SNP panels in diversity studies. BMC Genomics. 
19(1):22. doi:10.1186/s12864-017-4416-9.

Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles 
C. 2012. Novel measures of linkage disequilibrium that correct 
the bias due to population structure and relatedness. Heredity 
(Edinb). 108(3):285–291. doi:10.1038/hdy.2011.73.

McVean G. 2009. A genealogical interpretation of principal compo-
nents analysis. PLoS Genet. 5(10):e1000686. doi:10.1371/journal. 
pgen.1000686.

Meisner J, Albrechtsen A. 2019. Testing for Hardy–Weinberg equilib-
rium in structured populations using genotype or low-depth next 
generation sequencing data. Mol Ecol Resour. 19(5):1144–1152. 
doi:10.1111/men.v19.5.

Meisner J, Albrechtsen A. 2022. Haplotype and population structure 
inference using neural networks in whole-genome sequencing 
data. Genome Res. 32(8):1542–1552. doi:10.1101/gr.276813.122.

Meisner J, Liu S, Huang M, Albrechtsen A. 2021. Large-scale inference 
of population structure in presence of missingness using PCA. 
Bioinformatics. 37(13):1868–1875. doi:10.1093/bioinformatics/btab 
027.

Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L, Atzmon G, 
Burns E, Ostrer H, Price AL, Reich D. 2011. The history of African 
gene flow into Southern Europeans, Levantines, and Jews. PLoS 
Genet. 7:e1001373. doi:10.1371/journal.pgen.1001373.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc 
Natl Acad Sci U S A. 70:3321–3323. doi:10.1073/pnas.70.12.3321.

Nei M, Li WH. 1973. Linkage disequilibrium in subdivided populations. 
Genetics. 75:213–219. doi:10.1093/genetics/75.1.213.

Patterson N, Price AL, Reich D. 2006. Population structure and eigen-
analysis. PLoS Genet. 2:e190. doi:10.1371/journal.pgen.0020190.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. 
Scikit-learn: machine learning in Python. J Mach Learn Res. 12: 
2825–2830.

Pfaff C, Parra E, Bonilla C, Hiester K, McKeigue P, Kamboh M, 
Hutchinson R, Ferrell R, Boerwinkle E, Shriver M. 2001. Population 
structure in admixed populations: effect of admixture dynamics 
on the pattern of linkage disequilibrium. Am J Hum Genet. 68: 
198–207. doi:10.1086/316935.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population 
structure using multilocus genotype data. Genetics. 155: 
945–959. doi:10.1093/genetics/155.2.945.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, 
Maller J, Sklar P, de Bakker PI, Daly MJ, et al. 2007. PLINK: a tool set 
for whole-genome association and population-based linkage 
analyses. Am J Hum Genet. 81(3):559–575. doi:10.1086/519795.

Ragsdale AP, Gravel S. 2019. Unbiased estimation of linkage disequi-

librium from unphased data. Mol Biol Evol. 37(3):923–932. doi:10. 
1093/molbev/msz265.

Rousseeuw PJ. 1987. Silhouettes: a graphical aid to the interpretation 
and validation of cluster analysis. J Comput Appl Math. 20:53–65. 
doi:10.1016/0377-0427(87)90125-7.

Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, 
Narita A, Konuma T, Yamamoto K, Akiyama M, et al. 2021. A 
cross-population atlas of genetic associations for 220 human 
phenotypes. Nat Genet. 53:1415–1424. doi:10.1038/s41588-021- 
00931-x.

Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò 
MR, Palmer T, Schooling CM, Wallace C, Zhao Q, et al. 2022. 
Mendelian randomization. Nat Rev Methods Primers. 2:6. doi:
10.1038/s43586-021-00092-5.

Santiago E, Novo I, Pardiñas AF, Saura M, Wang J, Caballero A. 2020. 
Recent demographic history inferred by high-resolution analysis 
of linkage disequilibrium. Mol Biol Evol. 37(12):3642–3653. doi:10. 
1093/molbev/msaa169.

Scrucca L, Fraley C, Murphy TB, Adrian ER. 2023. Model-based clus-
tering, classification, and density estimation using mclust in R. 
Chapman and Hall/CRC.

Sinnock P. 1975. The Wahlund effect for the two-locus model. Am 
Nat. 109(969):565–570. doi:10.1086/283027.

Slatkin M. 2008. Linkage disequilibrium—understanding the evolu-
tionary past and mapping the medical future. Nat Rev Genet. 
9(6):477–485. doi:10.1038/nrg2361.

Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, Groza T, Güneş 
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