FastNGSadmix: Difference between revisions

From software
Jump to navigation Jump to search
Line 269: Line 269:
= Making a reference panel =
= Making a reference panel =


The program needs a reference panel of population specific frequencies, populations for which admixture proportions should be estimated,
The program needs a reference panel of population specific frequencies, populations for which admixture proportions should be estimated for.
for instance from 1000 G or HGDP, or another custom made reference panel. The program also needs a file telling the size of each reference panel population.
This reference panel can be derived from 1000 Genomes or HGDP, or other data. The program also needs a file telling the size of each reference panel population.
There is an R script plinkToRef.R in the data folder, that can convert a plink file to a reference panel and size of reference panel populations.
There is an R script plinkToRef.R in the R folder, that can convert a plink file to a reference panel and size of reference panel populations.
Example:
Example:


Line 278: Line 278:
</pre>
</pre>


This generates 3 files, a reference panel named data/refPanel_humanOrigins_7worldPops.txt, a number of individuals file called  data/nInd_humanOrigins_7worldPops.txt and a data/humanOrigins_7worldPops.sites file with chr pos and minor major alleles.
This generates 3 files, a reference panel named data/refPanel_humanOrigins_7worldPops.txt, a number of individuals file called  data/nInd_humanOrigins_7worldPops.txt and a data/humanOrigins_7worldPops.sites file with chr pos and minor major alleles, for being used with ANGSD.
The provided .fam file must have the group or population specified as FID, meaning first column and then the individual ID as the second column:
The provided .fam file must have the group or population specified as FID, meaning first column and then the individual ID as the second column:


Line 296: Line 296:
</pre>
</pre>


The '''snpStats R package''', is needed for running the plinkToRef.R script.
The '''snpStats R package''', is also needed for running the plinkToRef.R script.


It should be noted that reading in plink files especially big ones '''might require a lot of RAM''', why doing it on a server might be preferable!
It should be noted that reading in plink files especially big ones '''might require a lot of RAM''', why doing it on a server might be preferable!

Revision as of 09:38, 6 March 2017

This page contains information about the program fastNGSadmix, a very fast tool for finding admixture proportions from NGS data of a single individual and a method for doing PCA of NGS data, using the estimated admixture proportions. It is based on genotype likelihoods. It also read plink files. The admixture estimation part is written in C++ and the PCA part is written in R.

Download

The program can be downloaded from github:

https://github.com/e-jorsboe/fastNGSadmix

git clone https://github.com/e-jorsboe/fastNGSadmix.git;
cd fastNGSadmix 
make

So far it has only been tested on Linux systems.

Data for the analyses as well as example data can be downloaded from:

wget popgen.dk/software/download/fastNGSadmix/data.tar.gz
wget popgen.dk/software/download/fastNGSadmix/example.tar.gz

Use curl if you are on a MAC

They can be unpacked thus:

tar -xzf data.tar.gz
tar -xzf example.tar.gz

The data folder both has an already made reference panel (more on this in the Making a reference panel section) for the admixture estimation and the genotypes of the reference individuals in plink format for the PCA analysis.


Quick start

#file with genotype likelihoods
GL=example/NA12763.mapped.ILLUMINA.bwa.CEU.low_coverage.20130502.bam.beagle.gz

#plink file with genotypes
PLINKFILE=example/NA20502_TSI

#frequencies from reference panel
REF=data/refPanel_humanOrigins_7worldPops.txt

#number of individuals in each population of reference panel
NIND=data/nInd_humanOrigins_7worldPops.txt

#Estimate admixture proportions
./fastNGSadmix -likes  $GL -fname $REF -Nname $NIND -outfiles NA12763_CEU -K 3

#perform PCA
Rscript R/fastNGSadmixPCA.R likes=$GL  qopt=NA12763_CEU.qopt out=NA12763_CEU  geno=data/humanOrigins_7worldPops

#Estimate admixture proportions with plink File
./fastNGSadmix -plink  $PLINKFILE -fname $REF -Nname $NIND -outfiles NA20502_TSI -K 3

#perform PCA with plink file
Rscript R/fastNGSadmixPCA.R plinkFile=$PLINKFILE  qopt=NA20502_TSI.qopt out=NA20502_TSI  geno=data/humanOrigins_7worldPops


It should be noted that when running with a K smaller than the reference panel, the K first population of the reference panel will be analyzed. In order to choose which population to include use the -whichPops option.

Input Files

Input files are genotype likelihoods in the genotype likelihood beagle input file format [1]. Or called genotypes in the binary plink files (*.bed) format [2] We recommend ANGSD for easy transformation of Next-generation sequencing data to the beagle format and plink2 for handling plink files. See the ANGSD wiki for installing and other documentation

The example below shows how to make a beagle file of genotype likelihoods using ANGSD.


#BAM/CRAM file
BAM=example/smallNA12874.mapped.ILLUMINA.bwa.CEU.low_coverage.20130415.bam 

#sites in the referene panel including major and minor allele
SITES=data/humanOrigins_7worldPops.sites

#run ANGSD
./angsd -i $BAM -GL 2 -sites $SITES -doGlf 2 -doMajorMinor 3 -minMapQ 30 -minQ 20 -doDepth 1 -doCounts 1 -out outName

Example of a beagle genotype likelihood input file for 1 individual.

marker       allele1  allele2   Ind0      Ind0    Ind0
1_14000023      1       0       0.941    0.058    0.000
1_14000072      2       3       0.709    0.177    0.112
1_14000113      0       2       0.855    0.106    0.037
1_14000202      2       0       0.835    0.104    0.060
...

Where the marker column SHOULD be chr_pos, instead of rs ID.

A provided .sites file has been included, in the data folder.

Running fastNGSadmix

An example of running a command with fastNGSadmix with a beagle file and a chosen K of 3:

#genotype likelihoods from sequencing file
GL=example/NA12763.mapped.ILLUMINA.bwa.CEU.low_coverage.20130502.bam.beagle.gz

#frequencies from reference panel
REF=data/refPanel_humanOrigins_7worldPops.txt

#number of individuals in each population of reference panel
NIND=data/nInd_humanOrigins_7worldPops.txt
./fastNGSadmix -likes $GL -fname $REF -Nname $NIND -outfiles NA12763_CEU -K 3

If the reference panel has more than K populations, the program will just use the K first populations. You can pick which populations should be analyzed via the "-whichPops" option, where you write the names of the population comma seperated, K has to be same number as selected populations. It should also be noted that the program quits if there are duplicate sites (based on chr_pos ID) in the input or the reference panel.

It then produces two files NA12763_CEU.qopt with the admixture proportions and a log file NA12763_CEU.log.

Or with a plink file, with also the -whichPops option:

PLINKFILE=example/NA20502_TSI

./fastNGSadmix -plink $PLINKFILE -fname $REF -Nname $NIND -outfiles NA20502_TSI -K 3 -whichPops French,Han,Yoruba

A whole list of options can be explored by running fastNGSadmix without any input:

./fastNGSadmix
-printFreq [int]

This option prints the admixture adjusted allele frequencies of reference panel + input individual. Disabled per default can be enabled by setting this to 1.

-whichPops [char*]

Which populations from the reference panel to include in analysis, must be comma separated (pop1,pop2,..) and must be same size as K.

-doAdjust [int]

By default the method adjusting the frequencies is used (see more in the paper), to use the unadjusted approach set "-doAdjust 0".

-seed [int]

Set seed for initial guesses in EM and for bootstrap.

-method [int]

Enable acceleration of EM algorithm, enabled per default, set to 0 for unaccelerated EM.

-Qconv [int]

For faster inference of admixture proportions the "-Qconv" option can be set to 1, this bases the converge criteria on change in the admixture proportions values. The threshold of this can be set with "-Qtol".

-Qtol [float]

By default the "-Qtol" threshold is 0.0000001, it should not be put lower than this and generally this is only for when wanting a fast overview of the data, as it is less precise than the likelihood based convergence.

-tol [float]

Tolerance for convergence based on likelihoods, per default 0.00001.

-maxiter [int]

aximum number of EM iterations per default it is set to 2000.

-conv [int]

Specifies the number of convergence runs, with a new random starting point for each run. This is useful to test for convergence. The program will execute a maximum of 10 times.

-boot [int]

Specifies the number of bootstrap runs, where random sites are sampled for each run. This is useful for generating a confidence interval of your estimate, for example doing the empirical 0.025 and 0.975 quantiles. The maximum number of bootstraps is 10000.


Outputs

fastNGSadmix produces two files, a .qopt file, with the estimated admixture proportions, with names of which population they are inferred for. If n number of bootstraps are run, there will be n rows with boostrapping estimates, the first row of the .qopt file has the names of the populations analyzed and the second row has the converged upon estimates:

cat NA20502_TSI.qopt

French Han Yoruba 
1.0000 0.0000 0.0000

And if doing 10 bootstraps:

./fastNGSadmix -plink $PLINKFILE -fname $REF -Nname $NIND -outfiles NA20502_TSI_boot -K 3 -whichPops French,Han,Yoruba -boot 10


cat  NA20502_TSI_boot.qopt

French Han Yoruba 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 
1.0000 0.0000 0.0000 

Where the first row is the converged upon estimates, and the rest are the bootstrapping runs.

It also produces a .log file with all the information about the run, as well as the converged upon estimate:

cat NA20502_TSI_boot.log 

Input: likes=(null) plink=example/NA20502_TSI K=3 Nname=data/nInd_humanOrigins_7worldPops.txt fname=data/refPanel_humanOrigins_7worldPops.txt outfiles=NA20502_TSI_boot
Setup: seed=1488724468 method=1
The accelerated EM has been chosen
The adjusted method has been chosen
Convergence: maxIter=2000 tol=0.00000010
The following number of bootstraps have been chosen: 10
Input has this many sites 441695
Ref has this many sites 442770
Overlap: of 441695 sites between input and ref
Opening nInd file: data/nInd_humanOrigins_7worldPops.txt with K=3
Chosen pop French
N = 25.000000
Chosen pop Han
N = 33.000000
Chosen pop Yoruba
N = 70.000000

This many iterations 28 for run 0

At this bootstrapping: 1 out of: 10
At this bootstrapping: 2 out of: 10
At this bootstrapping: 3 out of: 10
At this bootstrapping: 4 out of: 10
At this bootstrapping: 5 out of: 10
At this bootstrapping: 6 out of: 10
At this bootstrapping: 7 out of: 10
At this bootstrapping: 8 out of: 10
At this bootstrapping: 9 out of: 10
At this bootstrapping: 10 out of: 10
best like -304264.187615 after 0!
Q 0.999976 Q 0.000014 Q 0.000010  after 0!

Estimated  Q = 0.999976 0.000014 0.000010 
best like -304264.187615 after 0 runs!
FIRST row of .qopt file is BEST estimated Q, rest are nBoot bootstrapping Qs
	[ALL done] cpu-time used =  20.93 sec
	[ALL done] walltime used =  21.00 sec

PCA

After having run the admixture estimation, a PCA analysis can be run using the estimated admixture proportions to account for population structure in the PCA. The PCA method is implemented in R and is run using the script fastNGSAdmixPCA.R.

The method needs the estimated admixture proportions, the analyzed beagle or plink file as well as the genotypes of the reference panel used (as binary plink files).

GL=example/NA12763.mapped.ILLUMINA.bwa.CEU.low_coverage.20130502.bam.beagle.gz
Rscript R/fastNGSadmixPCA.R likes=$GL  qopt=NA12763_CEU.qopt out=NA12763_CEU  geno=data/humanOrigins_7worldPops

Or using analyzed plink files.

Rscript R/fastNGSadmixPCA.R plinkFile=$PLINKFILE qopt=NA20502_TSI.qopt out=NA20502_TSI  geno=data/humanOrigins_7worldPops

By default the populations of the analyzed *.qopt file are used. It can be specified which PCs should be plotted (default PC1 and PC2), by for example giving PCs=2,3 as an argument (if PC2 and PC3). The script also generates barplots of the admixture proportions supplied with confidence intervals, as well as generating files of the covariance matrix, eigenvectors and eigenvalues used for the PCA plot.

The snpStats R package, is needed for running this script.

Making a reference panel

The program needs a reference panel of population specific frequencies, populations for which admixture proportions should be estimated for. This reference panel can be derived from 1000 Genomes or HGDP, or other data. The program also needs a file telling the size of each reference panel population. There is an R script plinkToRef.R in the R folder, that can convert a plink file to a reference panel and size of reference panel populations. Example:

Rscript R/plinkToRef.R data/humanOrigins_7worldPops

This generates 3 files, a reference panel named data/refPanel_humanOrigins_7worldPops.txt, a number of individuals file called data/nInd_humanOrigins_7worldPops.txt and a data/humanOrigins_7worldPops.sites file with chr pos and minor major alleles, for being used with ANGSD. The provided .fam file must have the group or population specified as FID, meaning first column and then the individual ID as the second column:

French F1 0 0 1 1
French F2 0 0 1 1
Yoruba Y1 0 0 2 1
Yoruba Y2 0 0 1 1
Yoruba Y3 0 0 2 1
...

A second argument of a MAF threshold can be supplied, meaning all sites where the MAF is below this in any population is removed.

Rscript R/plinkToRef.R data/humanOrigins_7worldPops 0.05

The snpStats R package, is also needed for running the plinkToRef.R script.

It should be noted that reading in plink files especially big ones might require a lot of RAM, why doing it on a server might be preferable!

Human reference panels

fastNGSadmix already comes with a premade reference panel.

refPanel_humanOrigins_7worldPops

This reference panel is made from Lazaridis et al. (2014) where the curated Human Origins dataset was selected.

The dataset was lifted to hg19 using the program liftOver, The SNPs then got rs IDs, using 1000G data.

Furthermore sites with more than 5 % missing and a MAF below 5 % were removed, only autosomal sites were kept. 7 populations were selected French, Han, Chukchi, Karitiana, Papuan, Sindhi and Yoruba to have representation for most of the world. Furthermore it was made sure that there were only unadmixed individuals within each population.

Creating other reference panels

Other reference panels can easily be made from the Human Origins data:


wget popgen.dk/software/download/fastNGSadmix/humanOrigins_ALL.tar.gz
tar -xzf humanOrigins_ALL.tar.gz

Where I have updated the ids with the group-id for the FID and individual-id as the IID as well as the snp-ids as chr_pos. Then I would recommend to keep only autosomal sites and do a MAF and geno filter (one can play around with these filters!):


plink --bfile humanOrigins_ALL/humanOrigins_ALL --make-bed --out humanOrigins_ALL/humanOrigins_ALLV2 --maf 0.05 --geno 0.05 --chr 1-22

And then the desired individuals/populations can be extracted from the humanOrigins_ALL/humanOrigins_ALLV2.* plink files using plink. It can easily be turned into a reference panel using R/plinkToRef.R.


Rscript R/plinkToRef.R humanOrigins_ALL/humanOrigins_ALLV2

Other reference panels for instance based on 1000 Genomes or own data, first convert it into plink files and then use the script R/plinkToRef.R.

Citation