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0.1 Introduction

BAMSE is a software for performing association studies for unrelated individu-
als. We have developed a method based on Bayesian statistics that can model
interactions for a large number of SNPs and environmental risk factors while ac-
counting for the multiple testing problem. More specifically we have developed
a Markov Chain Monte Carlo [1] method that allows for identification of sets
of SNPs and environmental factors that when combined increase disease risk or
change the distribution of a quantitative trait. In this method, combinations
of genetic and environmental genetic factors define risk sets. Individuals with
genotypes and environmental factors that are members of a risk set constitute a
risk group that have modified distributions of disease risk or quantitative trait
value. Phenotypic traits are modelled using normal distributions (for quantita-
tive traits) or using a binomial distribution (for case/control data). A Markov
chain is established with state space on the set of all possible risk sets and
parameters (e.g. mean and variance) of trait value distributions for each risk
set. The stationary distribution of the Markov chain is given by the posterior
density of risk sets and trait value distributions. Statistical inferences are based
on this posterior distribution. The Markov chain is simulated using a reversible
jump [2] version of the Metropolis-Hastings algorithm, to jump between risk
sets. This method differs fundamentally from previous approaches by enter-
taining non-linear models and by addressing the multiple testing problem in a
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computationally and statistically efficient manner. The present version of the
program can successfully be employed on data sets of thousands of individuals
and a couple of hundred SNPs.

0.1.1 Risk sets

Risk sets are combinations of SNPs and/or environmental factors. An example
of a risk set could be
{SNP5=Heterozygote or homozygote, SNP67=Wild type}
or
{SNP45=Homozygote, age¿46}.
Here each risk set has two components. The individuals who fits the description
of all the component is a risk set will constitute a risk group.

0.2 input data

The input file must be in the following format for k individuals, s SNPs, e
environmantal parameters, and a adjustment factors:
phe1 snp1

1 snp1
2 . . . snp1

s env1
1 env1

2 . . . env1
e adj1

1 adj1
2 . . . adja

n

phe2 snp2
1 snp2

2 . . . snp2
s env2

1 env2
2 . . . env2

e adj2
1 adj2

2 . . . adj2
a

...
phek snpk

1 snpk
2 . . . snpk

s envk
1 envk

2 . . . envk
e adjk

1 adjk
2 . . . adjk

a

where phei is the phenotype (response variable) for the ith individual, snpi

is the ith SNP, envi is the ith environmental factor and adji is the ith adjust-
ment factor. The number of columns should be the sum of the phenotype +
the number of SNPs + the number of environmental factors + the number of
adjustment variables (1+s+e+a). See also Section 0.6 and the test files.

phe The phenotype - any number - no missing data is allowed. The trait must
be normally distributed or binary (0 and 1)

snp The SNP - three categories (AA,Aa,aa) denoted 1, 2, 3. 0 is missing data. 1
mean homozygote for the A allele while 2 is heterozygotes. Which number
represents homozygote for the minor allele, heterozygous is not important.

env The environmental factor - any number - no missing data allowed. Any af-
fin transformation of the environmental factor will not change the results.

adj The adjustment factor - any number - no missing data is allowed. A linear
relationship with the phenotype is assumed (like a covariate in a linear
model).

0.3 options file

The option file must be modified according to the input data.

2



500 the number of individuals
20 the number of SNPs
0 the number of environmental factors
1 the starting number of risk sets
14 the maximum allowed risk sets
0 the minimum allowed risk sets
4 the maximum allowed active components
1 the minimum allowed active components
0.5 the prior for the number of active components ~geo(PriorActive)
0.5 the prior for the number of risk sets ~geo(PriorRiskSet)
200 the maximum value for the standard deviation
100 the number kappa will be multiplied with
0 0: the empirical average will be used, 1: the midrange will be used
10 the starting value for the SD
1 1: prints the risk sets, 0: does not
100000 the number of iterations
0 the number of iterations discarded (the burn in)
100 the thinning rate
5 the ratio for updating the mean
0 0: the trait is normally distributed. 1: the trait is binary
0 the number of permutations
1 1: risksets have a higher mean than the none risk set
0 the number of adjustment factors
0 range min
0 range max: if range min =0 and range max = 0...
0.90 this fraction of the individual used to calculate.........
0 0: use frequencies for prios for missing genotypes. 1: use custom priors
0.33 the cutoff for accepting a infered genotype.

NB! the maximum allowed active parameters must never exceed the number
of environmental factors + the number of SNPs.

the number of individuals The number of individuals in the input file

the number of SNPs The number of SNPs in the input file

the number of environmental factors The number of environmental fac-
tors in the input file

the starting number of risk sets the number of risk sets in the first state
of the algorithm

the maximum allowed risk sets integer ≥ 1.

the minimum allowed risk sets integer ≥ 0 and less or equal to the maxi-
mum allowed risk sets

the maximum allowed active components integer ≥ 1. This number is
also the maximum allowed order of an interaction.
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the minimum allowed active components integer ≥ 1 and less or equal to
the maximum allowed active parameters

the prior for the number of active parameters geo(PriorActive) [0,1]
The prior for the order of the interactions assuming a geometric distribu-
tion. Since the number order is finite (the maximum allowed active pa-
rameters) the distribution is normalized to sum to one. See figure figure 1
on page 8

the prior for the number of risk sets geo(PriorRiskSet) [0,1] The prior
for the number of risk sets assuming a geometric distribution. Since the
number order is finite (the maximum allowed risk sets) the distribution is
normalized to sum to one. See figure figure 1 on page 8

the maximum value for the standard deviation some large enough num-
ber

the number kappa will be multiplied with a number ≥ 0. The higher the
number the lower the prior is for the extreme phenotypes. If the number
is low, e.g. 1, the prior for the means of the risk sets is fairly flat.

the empirical average will be used 1: the midrange will be used The prior
for the means of the risk sets i assumed to be normally distributed. The
mean for this normal distribution is either the average of the observed
phenotypes or the median of the phenotypes

1: prints the risk sets, 0: does not Always choose 1 to get any output for
further analysis.

the number of iterations An integer. The MCMC algorithm must be run for
at least several thousands iterations. The more SNPs and environmental
factors that are included the longer the algorithm must be run. Recom-
mendation: First try to run the algorithm for 100, 000 iteration one or two
times and then do some convergence diagnostics (See also section 0.6.1 on
page 8).

the number of iterations discarded (the burn in) The burn in can be spec-
ified in the analysis of the output but can also be specified here (if no con-
vergence diagnostic will be performed). Recommendation: chose 0 and
remove the burn in later.

the tinning rate the rate of the sampling. For a long run time with large or
complex data the thinning rate should be high e.g. 100 or 500

the ratio for updating the mean the number of times the mean is updated
in each iteration. A high number can improve mixing but for complex
data where many (¿2) risk sets is frequently sampled a high number will
slow the algorithm severely.
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0: the trait is normally distributed. 1: the trait is binary If the trait is
binary the trait should consist of 0 and 1. No adjustment is allowed for
the binary test.

the number of permutations The number of permutations to be performed.
NB! start with a small number of permutation since large data sets can
give memory problems. The permutations will give a p-value based on the
posterior distributions of the number of risk sets e.i. the p-value for the
global association to the trait. For large data sets permutation test can
be very slow.

risk sets have a higher mean than the none risk set should the risk sets
have a higher mean than the mean of the none-risk set. If this is chosen
then the label switching problem will be removed.

the number of adjustment factors integer.

range min The minimal allowed mean for the risk sets. (see range max)

range max: if range min =0 and range max = 0... The maximal allowed
mean for the risk sets. If both range min and range max are 0 the min
and max is calculated from the data. (see this fraction..)

this fraction of the individual used to calcu... this value (0, 1] is the frac-
tion of the data that is used to calculate the minimal and maximal range
of the risk sets means. If 1 all of the range of the data is used. If for
example 0.9 is used then the range is between the 5% highest and the 5%
lowest values of the observed trait.

use frequencies for prios for missing genotypes. 1: use custom priors
If there is missing genotype the prios can be estimated using several
method. If 0 is chosen their prios are estimated from the frequencies
of the allele in the sample assuming Hardy Weinberg equilibrium. Cus-
tom prior estiamted from for example PHASE or fastPHASE can also be
given. The format of the custom priors is the fastPHASE output format.

the cutoff for accepting a infered genotype a threshold for infering miss-
ing genotypes as observed if there probability is larger than this threshold.
Only relevant if custon priors for the missing genotypes are used.

0.4 Running BAMSE

The program is written in C++ and can run on either window or Linux.
For window users get the bamse.exe file and the options file. Open the

command prompt and go to the folder with the exe file and the options.txt file.
For linux users you need the bamse file and the option file. Run the program
from a terminal. The command line is:
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bamse -o optionfilename inputfilenames > output.file

if the -o optionfilename is not provided then the program assumes the the op-
tionfile is called option.txt and is located in the same folder. For Linux users
the path must be given, e.g. ./bamse. Multiple inputfilenames can be given but
they must all use the same optionfile.

If a custom prior for the missing genotypes are provided the path and name
for this file must also be provided.

bamse -o optionfilename -m missingdatafilename inputfilenames > output.file

0.5 Analysing the results

The C++ program only gives the posterior distribution for the number of risk
sets. Even though this is the primary measure for association it is probably
of interest to see which factors and combinations of factors that cause this
association. We have built an R package to read and interpret the C++ output.

0.5.1 using the R package

Install the R package from the local directory (file called BAMSE.zip for Win-
dows and BAMSE 1.0.tar.gz for linux). Then import the package in R

>library(BAMSE)

A short description for the main function is given here and in Section 0.6
but there is a more thorough description in R function descriptions. The names
and a short description can be seen by the command

>help(package=BAMSE)

and each function also has a description that can be accessed by typing ?
and the function name e.g.

>?read.mcmc

where read.mcmc is the function name.
read in one or more outputs

>mcmc1<-read.mcmc("C:/BAMSE MANUAL/set5.mcmcres")
>mcmc2<-read.mcmc("C:/BAMSE MANUAL/set5.mcmcres2")

NB! If the result is very large this can take several minutes and requires a large
amount of memory especially for window users. The output is stored in the
objects here called mcmc1 and mcmc2. For a short description of the data just
type the object name.

>mcmc1
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0.5.2 Posterior probabilities

The measure of the association here is the posterior probabilities. This measure
is in the range (0, 1) and a value close to 0 is evidence against there being a
association and a value close to 1 is evidence for there being a association. The
BAMSE method gives three levels of association:

Posterior distribution of the number of risk sets This is the overall as-
sociation measure. If any of the SNPs or environmental factors are associ-
ated with the trait, though marginal or though interaction, the posterior
probability for their being a least one risk set will be high.

Posterior probability for a component being part of a risk set This pos-
terior will give a probability for a component (SNP or environmental fac-
tor) being associated with the trait (though marginal or though interaction
effects).

Posterior probability for a risk set or a cluster of risk sets This poste-
rior will give a probability for a specific combination of components or
multiple similar combinations of components being associated with the
trait

The three measures does not need to be corrected for multiple testing. The
association can also be shown as Bayes factors but this measure will need to be
corrected for multiple testing.

0.6 Example

The test input files

set1.test 20 SNPs with no genetic effect

set2.test 20 SNPs with one SNP with a dominant effect

set3.test 20 SNPs with one pair of interacting SNPs

set4.test 20 SNPs with two pairs of interacting SNPs

set5.test 20 SNPs with one pairs of interacting SNPs and LD

All of the files have 500 individuals with a mean phenotype of 100 for unaffected
individuals and an elevated phenotypes for affected.

We recommend a burn in of at least 1000 iterations and a run time of at
least 50, 000. However the burn in does not need to be chosen when running
the C++ program.

For linux the command could look like this

./bamse set1.test>set1.mcmcres
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where set1.mcmcres is the name of the output file. Using the default option file
this should take less than a minute.

The posterior distribution for the number of risk sets can be seen at the
bottom of the result file. If the posterior probability for there being at least one
risk set is low (¡0.3) there is no association with the phenotype (1-posterior for
there being 0 risk sets). If it is higher the result can be further explored using
the R package called BAMSE.

The prior can be visualized using the plot.priors function (See Figure 1)

plot.priors(mcmc1,col=2)
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Figure 1: The priors (command:plot.priors(mcmc1,col=2))

0.6.1 Convergence diagnostic

To perform convergence diagnostic run the C++ program twice on the same
data using the same settings. Try for example set4 and load the data into R as
described in Section 0.5.1 so that the mcmc object is called mcmc1.

>library(BAMSE)
>mcmc1<-read.mcmc("C:/BAMSE MANUAL/set4.mcmcres")
>mcmc2<-read.mcmc("C:/BAMSE MANUAL/set4.mcmcres2")
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It is very important that the chains have converged to stationarity. To view
the parameters that have been sampled in each iteration type

>plot.mics(mcmc1)

or

>plot.mics(mcmc1,mcmc2)

For a more formal measure of convergence use Gelman and Rubin’s diag-
nostic that gives a potential scale reduction factor. A low factor (e.g.¡1.05) give
confidence that the chains have converged and are sampling from the stationary
distribution.

>mcmc.diag(mcmc1,mcmc2,burnin=10000)

0.6.2 Association evaluation

To show graphic of the result try

>plot.standard(mcmc1,burnin=10000)

to show the likelihood before and after removing the burn in, show the posterior
distribution of the number of risk sets and the posterior probability for each if
the SNP and environmental parameters being part of a risk set. This function
uses the functions plot.like, plot.riskset, and plot.visit.

Finally the most frequently sampled risk sets can be seen by the command

>mcmc.risksets(mcmc1,thres=0.1)

where the threshold defines how frequent the risk set has to be sampled.
Each SNP or pair of SNPs can also be explored using

plot.geno(mcmc1,nr.snp=c(20))
plot.geno(mcmc1,nr.snp=c(1,20))
plot.visit2(mcmc1)
plot.visit2(mcmc1,nr.snp=20)
plot.visit2(mcmc1,nr.snp=c(1,20))

In Test set 5 there is strong LD between the SNPs (see Figure 2). The data
is simulated so that the individuals who are carriers of the minor allele at both
SNP 1 and SNP 20 have a higher phenotype. Because of the LD it is hard
to see which of the SNPs that are the functional SNPs. The p-values and the
posterior probabilities for being part of a risk set can be seen in Figure 3. As
seen in Figure 2 there is high LD for SNP 1 with SNP 7, 9, 17 and SNP 20
with SNP 2. Using the plot.visit function it can be seen that SNP 1 very often
sampled with SNP 2 or SNP 20 (plot.visit2(mcmc1,1)) and SNP 20 is often
sampled with SNP 7,9,17 or 20 (plot.visit2(mcmc1,20)).

9



Pairwise LD

Physical Length:0kb

* * * * * * * * * * * * * * * * * * * *

  V2

  V3

  V4

  V5

  V6

  V7

  V8

  V9

  V10

  V11

  V12

  V13

  V14

  V15

  V16

  V17

  V18

  V19

  V20

  V21

Color Key

0 0.2 0.4 0.6 0.8 1

Pairwise LD

Physical Length:0kb

* * * * * * * * * * * * * * * * * * * *

  V2

  V3

  V4

  V5

  V6

  V7

  V8

  V9

  V10

  V11

  V12

  V13

  V14

  V15

  V16

  V17

  V18

  V19

  V20

  V21

Color Key

0 0.2 0.4 0.6 0.8 1

Figure 2: The LD patters of the twenty SNPs, measure as the squared correla-
tion coefficient (r2)(left) and as D’ (right)
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Figure 3: The posterior for being part of a risk set and the p-valued for the
full model vs. the null model 2df (command:with.p(mcmc1,”C:/BAMSE MAN-
UAL/set5.test”))
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